References
- Berry, J. and Bjorkman, O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. 31:491-543. https://doi.org/10.1146/annurev.pp.31.060180.002423
- Bita, C.E. and Gerats, T. 2013. Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci. 4:273.
- Downs, C.A., Heckathorn. S.A. 1998. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430:246-250. https://doi.org/10.1016/S0014-5793(98)00669-3
- Grover, A., Sabat, S.C. and Mohanty, P. 1986. Effect of temperature on photosynthetic activities of senescing detached wheat leaves. Plant Cell Physiol. 27:117-126.
- Heckathorn, S.A., Downs, C.A., Sharkey, T.D. and Coleman, J.S. 1998. The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress. Plant Physiol. 116:439-444. https://doi.org/10.1104/pp.116.1.439
- Hu, H., Yanhui, Li., Chaohai, Li., Yang, H., Wang, W. and Lu, M. 2010. Characterization of small heat shock proteins associated with maize tolerance to combined drought and heat stress. J. Plant Growth Regul. 29:455-464. https://doi.org/10.1007/s00344-010-9157-9
- Jana, S. and Choudhuri, M.A. 1981. Glycolate metabolism of three submerged aquatic angiosperm during aging. Aquat. Bot. 12:345-354.
- Mathur, S., Agrawal, D. and Jajoo, A. 2014. Photosynthesis: Response to high temperature stress. J. Photochem. Photobiol. B: Biology. 137:116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
- Mendelsohn, R. 2009. The impact of climate change on agriculture in developing countries. J. Natural Resources Policy Research. 1:5-19.
- Nordhaus, W.D. 1991. To slow or not to slow: The economics of the greenhouse effect. The Economic J. 101:920-937. https://doi.org/10.2307/2233864
- Srivastava, A., Guissre, B., Greppin, H. and Strasser, R.J. 1997. Regulation of antenna structure and electron transport in Photosystem II of Pisum sativum under elevated temperature probed by the fast polyphasic chlorophyll a fluorescence transient: OKJIP. Biochim. Biophys. Acta. 1320:95-106. https://doi.org/10.1016/S0005-2728(97)00017-0
- Vierling, E. 1991. The roles of heat shock proteins in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:579-620. https://doi.org/10.1146/annurev.pp.42.060191.003051
- Volkov, R.A., Panchuk, I.I., Mullineaux, P.M. and Schoffl, F. 2006. Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61:733-746. https://doi.org/10.1007/s11103-006-0045-4
- Wang, W.X., Vinocur, B., Shoseyov, O. and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244-252 https://doi.org/10.1016/j.tplants.2004.03.006
- Waters, E.R., Lee, G.J. and Vierling, E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47:325-338. https://doi.org/10.1093/jxb/47.3.325
- Zhang, X., Wollenweber, B., Jiang, D., Liu, F. and Zhao, J. 2008. Water deficits and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. J. Exp. Bot. 59:839-848. https://doi.org/10.1093/jxb/erm364