• Title/Summary/Keyword: slurry coating

Search Result 126, Processing Time 0.029 seconds

Spectral Response of the n-CdS/n-CdTe/p-CdTe Solar Cells (n-Cds/n-CdTe/p-CdTe 태양전지의 분광반응도)

  • Im, H.B.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.248-250
    • /
    • 1987
  • Transparent CdS films with low electrical restivity on glass substrates were prepared by coating a CdS slurry which contained 10 wt.% $CdCl_2$, and sintering in a nitrogen atmosphere at $600^{\circ}C$ for 2hr. All-polycrystalline CdS/CdTe solar cells were fabricated by coating CdTe slurries, which contained 1.0 or 4.5 wt.% $CdCl_2$, on the sintered CdS films and sintering at $700^{\circ}C$ for various periods of sintering. The spectral responses of the sintered CdS/CdTe solar cells were measured and compared with theoretically calculated quantum efficiency. The spectral responses of the sintered CdS/CdTe solar cells in the short-wavelength region decreases with-increasing sintering time. The poor response in this region is attributed to the existence of the Cd-S-Te solid solution in the compositional junction. The decrease in the maximum response in the long-wavelength region as the sintering exceeds certain time appears to be caused by the increase in the depth of the buried homo junction and by the increase in the series resistance. The $CdCl_2$ in the CdTe layer during sintering enchances the interdiffusion of S, Te or donor impurities across the metallurgical Junction causing the formation of deeper n-p junction in the CdTe layer.

  • PDF

Lanthanum Nickelates with a Perovskite Structure as Protective Coatings on Metallic Interconnects for Solid Oxide Fuel Cells

  • Waluyo, Nurhadi S.;Park, Beom-Kyeong;Song, Rak-Hyun;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Lee, Jong-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.344-349
    • /
    • 2015
  • An interconnect is the key component of solid oxide fuel cells that electrically connects unit cells and separates fuel from oxidant in the adjoining cells. To improve their surface stability in high-temperature oxidizing environments, metallic interconnects are usually coated with conductive oxides. In this study, lanthanum nickelates ($LaNiO_3$) with a perovskite structure are synthesized and applied as protective coatings on a metallic interconnect (Crofer 22 APU). The partial substitution of Co, Cu, and Fe for Ni improves electrical conductivity as well as thermal expansion match with the Crofer interconnect. The protective perovskite layers are fabricated on the interconnects by a slurry coating process combined with optimized heat-treatment. The perovskite-coated interconnects show area-specific resistances as low as $16.5-37.5m{\Omega}{\cdot}cm^2$ at $800^{\circ}C$.

Preparation of the TiO2 Coated Mica by Hydrolysis Method(I) (가수분해법에 의한 TiO2 피복 운모의 제조(I))

  • Park, Yoon-Chang;Kim, Hyo-Joong;Kwak, Chung-Heop;Suh, Tae-Soo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.5
    • /
    • pp.709-714
    • /
    • 1997
  • $TiO_2$ hydrate coating on mica in an aqueous solution of $TiOSO_4$ by the hydrolysis using ammonia water studied with emphasis on coating conditions for a uniform coating. For the uniform coating of $TiO_2$ film on mica surface, it was found that smaller mica particles were coated more uniformly compared to larger particles. It was necessary to suppress the rate of formation of hydrated $TiO_2$ particles in solution, which were deposited on mica and generate irregular coating. It was also necessary to control precipitation yield by varying the reaction temperature to obtain uniform coating. More uniform coating was obtained with higher precipitation yield. A uniform dense film was formed when mica particles of average size of $14.7{\mu}m$ is used for mica slurry solution, of which pH is 2.5, and the factor of acidity of $TiOSO_4$ solution is 291, and the solution was kept at $80^{\circ}C$ for 3 hours. The morphology of $TiO_2$ film formed on mica was little affected by firing at $900^{\circ}C$.

  • PDF

Characteristics of Anode-supported Flat Tubular Solid Oxide Fuel Cell (연료극 지지체식 평관형 고체산화물 연료전지 특성 연구)

  • Kim Jong-Hee;Song Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Anode-supported flat tubular solid oxide fuel cell (SOFC) was investigated to increase the cell power density. The anode-supported flat tube was fabricated by extrusion process. The porosity and pore size of Ni/YSZ ($8mol\%$ yttria-stabilized zirconia) cermet anode were $50.6\%\;and\;0.23{\mu}m$, respectively. The Ni particles in the anode were distributed uniformly and connected well to each other particles in the cermet anode. YSZ electrolyte layer and multilayered cathode composed of $LSM(La_{0.85}Sr_{0.15})_{0.9}MnO_3)/YSZ$ composite, LSM, and $LSCF(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.7}O_3)$ were coated onto the anode substrate by slurry dip coating, subsequently. The anode-supported flat tubular cell showed a performance of $300mW/cm^2 (0.6V,\; 500 mA/cm^2)\;at\;500^{\circ}C$. The electrochemical characteristics of the flat tubular cell were examined by ac impedance method and the humidified fuel enhanced the cell performance. Areal specific resistance of the LSM-coated SUS430 by slurry dipping process as metallic interconnect was $148m{\Omega}cm^2\;at\;750^{\circ}C$ and then decreased to $148m{\Omega}cm^2$ after 450hr. On the other hand, the LSM-coated Fecralloy by slurry dipping process showed a high area specific resistance.

Rheological Perspectives on Direct Printing Processes

  • An, Gyeong-Hyeon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.2-1.2
    • /
    • 2011
  • With recent advances in materials and products, materials processing experiences new challenges. More particles and polymers in material side and thinner and faster deformations in processing side. It happens in most emergying industries such as manufacturing of batteries, solar cells, multi-layer chips, displays, printed electronics, to list a few. In most cases, they are manufactured by coating or printing process, which is defined as a process in which gas is replaced by liquid on a substrate. In this sense, casting, inkjet printing, and roll-to-roll printing are all included. The printing process consists of three unit processes. As the materials used in the above mentioned applications typically contain a large amount of particles with polymers and solvents, they continuously change microstructures during preparation, flow, and even drying. However, little is known about the flow characteristics of such complex fluids and less is known about how to design and control the process. Therefore, for better control of the process and for better quality of the product, we need to understand the flow characteristics of these complex fluids under extremely fast flow environment.

  • PDF

Photovoltaic Properties of Sintered Cd$_{1-x}$ZnxS/CdTe Heterojunction Solar Cells (소결체 Cd$_{1-x}$ZnxS/DdTe 이종접합 태양전기의 특성)

  • 설여송;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1989.06a
    • /
    • pp.56-58
    • /
    • 1989
  • All-polycrystalline Cd$_1$-xZnxS/CdTe solar cells have been fabricated by coating CdTe slurries with 4.5 wt% of CdCl$_2$on the sintered Cd$_1$-xZnxS films and by sintering CdTe layer at 6$25^{\circ}C$ for lh in nitrogen atmosphere. Solar efficiency of the sintered Cd$_1$-xZnxS/CdTe solar cells increases as the Zn content increases up to x=0.06 and then decreases with further increase in the Zn content. A solar efficiency of 12.5% under a solar intensity of 76mW/$\textrm{cm}^2$ was observed in a Cd 0.94 Zn0.06S/CdTe solar cell. By optimizing the amount of CdCl$_2$in the slurry and sintering conditions, it is possible to produce Cd$_1$-xZnxS/CdTe solar cells with efficiency higher than 12%.

  • PDF

Electrical and Optical Properties of CdS Films Sintered with CdCl2 and InCl3 (CdCl2 와 InCl3 를 첨가한 CdS 소결막의 전기적 광학적 성질)

  • 김형수;임호빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.183-191
    • /
    • 1990
  • Polycrystalline CdS film have been prepared by coating a slurry constiting of CdS, CdCl2, various amount of InCl3 and propylene glycol on glass substrate and by sintering in a nitrogen atmosphere, and their sintering behaviors, electrical properties and optical properties have been investigated. As the amount of InCl3 increases, the enhancing effect of CdCl2 on sistering decreses resulting in a sharp decrease in optical transmittance and an increase in electrical resistivity. The carrier concentration is almost independent of InCl3 added due to the occurrence of chlorine doping and to the compensating effect of indium dopant. Microstructure an optical properties of CdS film, which contain CdCl2 and InCl3 before sintering, can be improved by sintering in a sealed boat.

Photovoltaic Properties of Sintered CdS/CdTe Solar Cell (소결체 ITO/CdS/CdTe 태양전지의 광전압특성)

  • 김동섭;조은철;안병태;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.216-220
    • /
    • 1994
  • Polycrystalline CdS films have been prepared by coating a slurry, which consisted of CdS, 11w% CdCl$_2$ and appropriate amount of propylene glycol, on glass substrate and glass substrate coated with indium tin oxide(ITO) followed by sintering in a nitrogen atmosphere. CdTe slurries consisting of Te powder and Cd powder were coated on the sintered CdS films and ITO/CdS films and were sintered in nitrogen to prepare sintered CdS/CdTe and ITO/CdS/CdTe solar cells. The value of fill factor increased due to low series resistance and open circuit voltage decreased due to low shunt resistance in the ITO/CdS/CdTe solar cells.

The electrical and optical properties of sintered CdS films with $InCl_3$ ($InCl_3$을 첨가한 CdS 소결막의 전기적, 광학적 성질)

  • 김형수;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.29-32
    • /
    • 1988
  • Polycrystalline CdS films were prepared by coating a slurry, which consisted of Cds, 11w/o of CdCl$_2$ and various amounts of InCl$_3$on the glass substrate and by sintering in a nitrogen atmosphere. Measurements on the electrical and optical Properties and observation on the microstructure of the sintered films were made. It was observed that the carrier concentration in the films remains almost constant on the addition of InCl$_3$. Optical transmittance remains constant on the addition of InCl$_3$ up to 3w/o but it decreases with further increase in InCl$_3$.

  • PDF

Effects of sintering conditions of (Cd+Te) films on the properties of sintered CdS/CdTe solar cells ((Cd+Te)막의 소결조건이 CdS/CdTe 태양전지의 특성에 미치는 영향)

  • 노재성;임호빈
    • Electrical & Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.26-34
    • /
    • 1988
  • Sintered CdS/CdTe solar cells have been farbricated by coating a (Cd+Te) slurry on sintered CdS films followed by the sintering at 625.deg.C for one hour with various heating rates. When cadmium and tellurinm powders are used instead of CdTe powder to form CdS/CdTe junction, CdTe is formed in the temperature range of 290.deg.C-400.deg.C. The microstructure of the CdTe films depends strongly on the heating rate of the sintering due to the low melting temperature and the high vapor pressure of the elemental Cd and Te. An optimum heating rate obtain CdTe films with uniform and dense microstructure which, in turn, improves the efficiency of the sintered CdS/CdTe solar cells. All-polycrystalline CdS/CdTe solar cells with an efficiency of 9.57% under 50mW/cm$^{2}$ tungsten light have been farbricated by using a heating rate of 14.deg.C/min.

  • PDF