• Title/Summary/Keyword: slump test

Search Result 408, Processing Time 0.026 seconds

A Study on the Behavior Characteristics of Soft Clay Ground by C.G.S Method (C.G.S공법을 적용한 연약점토지반에서의 거동특성에 관한 연구)

  • 천병식;여유현
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.307-323
    • /
    • 2003
  • In this study the pilot test of C.G.S (Compaction Grouting System) as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method to the soft ground and the effect of settlement restraint. The site for pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occurs continuously because this ground is very soft. Site investigations such as SPT, CPT and vane shear test were performed to determine the characteristics of ground improvement after the installation of C.G.S. Field measurements were performed on purpose to find out the displacement of ground during the installation of C.G.S. From the results of this study, C.G.S method can be optimized by the control of radius, space, depth, injection material and injection pressure. C.G.S improves soft ground with radial consolidation of adjacent soft ground. Considering that increase of N value to about 3, C.G.S can be considered as an effective method to increase the bearing capacity as well as constrain the settlement of soft ground. It is also expected to be economic and effective in the improvement of ground when it is used in applicable sites.

Performance Evaluation of Concrete using Performance Improving-type Polycarboxylic acid-based Admixture (성능개선형 폴리카르본산계 혼화제를 사용한 콘크리트의 성능평가에 관한 실험적 연구)

  • Seo, Tae-Seok;Choi, Hoon-Jae;Gong, Min-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.5
    • /
    • pp.445-451
    • /
    • 2017
  • Because of the supply-demand problem of aggregate, recently, the construction sites using 100% crushed sand are increasing and the use of low quality aggregate such as farmland sand is increasing too. When the low quality aggregate is used, the various quality defect of concrete such as the strength reduction, the increase of shrinkage and bleeding can be occurred. Therefore, in this study, the performance improvement PC admixture was developed to minimize the quality defect of plain concrete of basement parking area, when the low quality aggregate was used at the plain concrete of basement parking area. The slump loss to elapsed time test, the compressive strength test, the bleeding test and the drying shrinkage test were carried out.

Effect of presoaking degree of lightweight aggregate on the properties of lightweight aggregate concrete

  • Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.69-78
    • /
    • 2017
  • This study aimed at exploring the effect of presoaking degree of lightweight aggregate (LWA) on the fresh and hardened properties of concrete. Two series (i.e., Series A and Series B) of concrete mixes that were made of LWA with different moisture states were prepared. The presoaking degree of LWA was divided into three types: oven dry state, 1 hour prewetted and 24 hours prewetted. For the Series A, the water content of the lightweight aggregate concrete (LWAC) mixes was adjusted in accordance with the moisture condition of the LWA. Whereas the amount of water added in the Series B mixes was deliberately not adjusted for the moisture condition of the LWA. Slump test, mechanical tests, interfacial transition zone microscopical tests and thermal conductivity test were carried out on the specimens of different concretes and compared with control normal-weight aggregate concretes. The test results showed that the effect of mixing water absorption by LWA with different moisture states was reflected in the fresh concrete as the loss of mixture workability, while in the hardened concrete as the increase of its strength. With the use of oven-dried LWA, the effect of reduction of water-cement ratio was more significant, and thus the microstructure of the ITZ was more compact.

Mock-up Test of Concrete using Combined Coarse particle Cement and Fly-Ash (굵은 입자 시멘트 및 플라이애시를 복합 사용한 콘크리트의 Mock-up Test)

  • Lee, Chung-Sub;Lee, Jae-Youn;Jang, Duk-Bae;Kim, Young-Pil;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.87-91
    • /
    • 2009
  • This study investigates possibility for practical use through small sized test with OPC and substituted fly ash 10% and return coarse cement (RCC), classed 1100${\sim}$1200 cm2/g, which is made by Cyclone Separator at cement producing process 20% (CF) for OPC. The experimental factors are 48% of W/B and OPC and 2 kinds of concrete proportions. The target slump and air content are $150{\pm}25$ mm and $4.5{\pm}1.5$ %. For the results, the flowalility and air content of CF are less than OPC because it needs more superplasticiser and air-entraining agent. The temperature history of CF is lower than OPC about $6{\sim}10^{\circ}C$. For the strength properties, CF is less than OPC, but their gap is declined at 28 days. The strength of the specimens are ordered by standard curing, field cured specimens, and core specimens.

  • PDF

Properties and durability of concrete with olive waste ash as a partial cement replacement

  • Tayeh, Bassam A.;Hadzima-Nyarko, Marijana;Zeyad, Abdullah M.;Al-Harazin, Samer Z.
    • Advances in concrete construction
    • /
    • v.11 no.1
    • /
    • pp.59-71
    • /
    • 2021
  • This research aims to study the utilization of olive waste ash (OWA) in the production of concrete as a partial substitute for cement. Effects of using OWA on the physical and mechanical properties of concrete mixtures have been investigated. This is done by carrying out tests involving the addition of various percentages of OWA to cement (0%, 5%, 10% and 15%). For each percentage, tests were performed on both fresh and hardened concrete; these included slump test, unit weight test and compressive strength test after 7, 28 and 90 days. Durability tests were investigated in solutions containing 5% NaOH and MgSO4 by weight of water. In addition, resistance to high temperatures was tested by subjecting the cubes to high temperatures of up to 170℃. The results of this research indicate that a higher percentage of OWA gives a lower compressive strength and lower workability but higher performance in terms of durability against both different weather conditions and high temperatures.

A Study on Physical Properties of Concrete using Admixtures for High Strength Concrete (고강도콘크리트용 혼화재를 사용한 콘크리트의 물성에 관한 연구)

  • 이승한
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.2
    • /
    • pp.155-164
    • /
    • 1995
  • This study was performed to get high strength of the precase concrete adopting a steam curing by using a gypsum-admixture for the high strength concrete. The superplasticizer was used to compensate low slump of base concrete keeping its slump up about $6{\pm}1cm$. To examine the property for strength revelation of concrete using admixtures for a high strength concrete, steam and standard curing were compared each other. Test results were shown that admixtures for high strength concrete were more effective in steam curing than standard curing. On the condition that the unit cement content is about $530{\sim}600kg/m^3$, the compressive strength of concrete replacing by 10% of the admixture was obtained over $65Okgf/cm^2$, which was increased as 1.3 times as that for the nonreplacement. When the admixture was replaced to 15-30%, the compressive strengh was obtained over $700kgf/cm^2$ which was increased as 1.4 - 1.5 times. Therefore, the admixture for high strength concrete, being effective in steam curing, was more efficient to get a high strength concrete using only steam curing instead of an autoclave curing for the secondary products of cement.

A study on properties of ultra high strength concrete of above 100MPa - fluidity and rheology properties (100MPa급 이상의 초고강도 콘크리트의 특성에 관한 연구 - 유동성 및 rheology 특성)

  • Seo, Il;Lee, Jin-Woo;Park, Hee-Gon;Bae, Yeon-Ki;Cho, Sung-Hyun;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.317-320
    • /
    • 2008
  • In recent year, the ultra high strength concrete has highly increased and been used in many parts of the world. However, the viscosity of the ultra high strength concrete is high because of a low water to binder ratio (w/b). So that in this pater, the shear stress and the shear strain rate are directly measured by the viscometer in order to estimate the rheological properties of the ultra high strength concrete and a linear regression analysis was carried out to determine the plastic viscosity and the yield stress as slope. According to the test results, the yield stress and plastic viscosity are correlated to slump-flow, V-funnel flow time, O-lot flow time

  • PDF

Effects of silica fume, superplasticizer dosage and type of superplasticizer on the properties of normal and self-compacting concrete

  • Mazloom, Moosa;Soltani, Abolfazl;Karamloo, Mohammad;Hassanloo, Ahmad;Ranjbar, Asadollah
    • Advances in materials Research
    • /
    • v.7 no.1
    • /
    • pp.45-72
    • /
    • 2018
  • In the present study, a special attention has been paid to the effects regarding the use of different superplasticizers in different dosages. To do so, 36 mixes of normal and self-compacting concrete with two water/binder ratios of 0.35 and 0.45, four different types of superplasticizer including melamine-formaldehyde, naphthalene-formaldehyde, carboxylic-ether and poly-carboxylate, four different superplasticizer/cement ratios of 0.4%, 0.8%, 1.2% and 1.6% and two silica fume/cement ratios of 0% and 10% have been cast. Moreover, the initial and final setting time of the pastes have been tested. For self-compacting mixes, flow time, slump flow, V-funnel, J-ring and L-box tests have been carried out as well as testing the compressive strength and rupture modulus. For normal concrete mixes,slump test has been conducted to assess the workability of the mix and then for each mix, the compressive strength and rupture modulus have been determined. The results indicate that in addition to the important role of superplasticizer type and dosage on fresh state properties of concrete, these parameters as well as the use of silica fume could affect the hardened state properties of the mixes. For instance, the mixes whose superplasticizer were poly-carboxylic-ether based showed better compressive and tensile strength than other mixes. Besides, the air contents showed robust dependency to the type of the superplasticizer. However, the use of silica fume decreased the air contents of the mixes.

Evaluation on Mechanical and Mixing Properties of Ultra-high Strength Concrete with fck=150MPa (150MPa 초고강도 콘크리트의 배합 및 재료역학특성 평가 연구)

  • Kang, Hoon;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.113-120
    • /
    • 2010
  • Ultra-High Strength Concrete (UHSC) demands a clear presentation of its mechanical properties, as distinct from normal strength concrete, and an evaluation of the serviceability of high-rise buildings that use ultra-high strength concrete. Ultra-high strength concrete fck=150MPa was manufactured with pre-mix cement, and an experimental study was conducted to evaluate the mixing properties and compressive strength, with the major variables being unit cement contents, water-binder ratio, and type of pre-mix cement. The test result showed that 150MPa concrete requires about 6~7 minutes of mixing time until each of the materials (ordinary Portland cement, silica fume, blast-furnace slag powder and anhydrite) are sufficiently revitalized. The slump flow of fresh concrete was shown to be about 700~800mm with the proper viscosity. The average value of concrete compressive strength was shown to be about 70% in 7 days, 85% in 14 days, and 95% in 28 days, for 56 days of concrete material age.

Basic Mixing and Mechanical Tests on High Ductile Fiber Reinforced Cementless Composites (고인성 섬유보강 무시멘트 복합체의 기초 배합 및 역학 실험)

  • Cho, Chang-Geun;Lim, Hyun-Jin;Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Bang-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.2
    • /
    • pp.121-127
    • /
    • 2012
  • Cement has been traditionally used as a main binding material of high ductile fiber reinforced cementitious composites. The purpose of this paper is to investigate the feasibility of using alkali-activated slag and polyvinyl alcohol (PVA) fibers for manufacturing high ductile fiber reinforced cementless composites. Two mixture proportions with proper flowability and mortar viscosity for easy fiber mixing and uniform fiber dispersion were selected based on alkali activators. Then, the slump flow, compression, uniaxial tension and bending tests were performed on the mixes to evaluate the basic properties of the composites. The cementless composites showed an average slump flow of 465 mm and tensile strain capacity of approximately 2% of due to formation of multiple micro-cracks. Test results demonstrated a feasibility of manufacturing high ductile fiber reinforced composites without using cement.