• 제목/요약/키워드: sludge powder

검색결과 118건 처리시간 0.019초

실리카질 재료로서 석분 슬러지를 사용한 콘크리트의 강도 특성 (The Strength Properties of Concrete Used Stone Powder Sludge as Siliceous Material)

  • 정지용;최선미;곽은구;최세진;이성연;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.85-88
    • /
    • 2005
  • The stone powder sludge occurred at aggregate production process is classified the specified waste, so it is disposed by appropriate method. But the problems of the shortage of the disposal-site, the environment pollution, and the increase of disposal cost can be occurred in handling process, therefore the stone powder sludge is required the development of recycling technique. The stone powder sludge includes SiO2 of about $63\%$. This characteristic is important at the production of hardened specimens under condition of hydro-thermal reaction. In this study, we investigated the strength properties of concrete used stone powder sludge as siliceous material. The test results under condition of hydro-thermal reaction shows the two main facts. The first, the stone powder sludge is affected to fluidity because the surface of the stone powder sludge has characteristics of flakily and angularity. The second, weight content of the stone powder sludge, is not effective factor to the properties of strength.

  • PDF

Sludge Solubilization using Microwave Irradiation in the Presence of Fe Powder

  • Yi, Min-Joo;Choi, Hyun-Kyung;Han, Ihn-Sup
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제15권2호
    • /
    • pp.40-46
    • /
    • 2010
  • In this study, microwave irradiation, which is reflected by metals, was used to reduce the amount of sewage sludge, and the results were used to verify solubilization efficiency and determine optimum operation conditions. Biogas production and methane content of the gas under optimized conditions were measured with the biochemical methane potential (BMP) test. The sludge was taken from a thickened sludge tank at J sewage treatment plant (JSTP) in Seoul, Korea. For the experiments, 50 mL of sludge was filled in vessels and the vessels were irradiated with the power of 500, 600, 700, and 800W for 2~5 min. In addition, Fe powder was added by 0.01, 0.05, and 0.1 g to compare the efficiency with and without Fe powder. The results confirmed that solubilization efficiency was higher in the presence of Fe powder. The optimum conditions of 0.01 g addition of Fe powder with 800W irradiation for 5 min, yielded nearly 22.95% higher solubilization efficiency than without Fe powder. The BMP tests were carried out using sludge obtained from the experiments carried out under the optimum conditions. As a result, sludge subjected by 800W with 0.01 g of Fe powder for 5 min displayed the highest level of gas production and methane content. Through this study, it could be confirmed that solubilization efficiency increased by addition of Fe powder.

Applicability of Stone Powder Sludge as a Substitute Material for Quartz Sand in Autoclaved Aerated Concrete

  • Kim, Jin-Man;Choi, Se-Jin;Jeong, Ji-Yong
    • 한국건축시공학회지
    • /
    • 제17권1호
    • /
    • pp.111-117
    • /
    • 2017
  • Stone powder sludge is a byproduct of the crushed aggregate industry, and most of it is dumped with soil in landfills. The disposal of stone powder sludge presents a major environmental problem. This paper investigates the effects of stone powder sludge on the fluidity, density, strength and micro-structure properties of AAC(autoclaved aerated concrete) samples. Stone powder sludge was obtained from a crushed aggregate factory in order to investigate its applicability as a substitute for quartz sand in AAC. To determine the properties of the AAC samples produced with stone powder sludge, specimens containing different foam ratios were produced. Flow value, density, compressive strength, tensile strength and flexural strength of the samples were tested, and X-ray diffraction (XRD) was performed. The test results indicated that the compressive strength of AAC specimens (F120) with stone powder sludge was higher than that of AAC specimens (Q120) with quartz sand for same foam ratio of 120%. For all XRD diagrams, a higher number of tobermorite peaks was shown for the F120 sample than for the Q120 sample, which may explain the slightly higher strength gain in the F120 sample.

석산에서 발생하는 슬러지 미립분의 혼입률 변화에 따른 시멘트 모르타르의 강도 및 흡수 특성 (Strength and Absorption Properties of Cement Mortar Produced with Various Content of Sludge Powder at Mines)

  • 한천구;신병철;김기철;이상태
    • 콘크리트학회논문집
    • /
    • 제13권6호
    • /
    • pp.561-567
    • /
    • 2001
  • 석산에서 부순잔골재를 생산시에는 다량의 슬러지 미립분이 배출되고 있다. 그러나, 실무현장에서는 슬러지의 일부를 매립용등에 제한적으로 사용할 뿐, 대부분은 방치되거나 무분별하게 버려지고 있어 막대한 경제적 손실과 환경오염 문제를 유발시키고 있다. 따라서 본 연구에서는 석산폐기물인 슬러지를 공장제품용 시멘트 모르타르 제조에 골재대체용 충전재로 활용하기 위하여, 골재 종류 및 모르타르 배합비 등에 미립분 혼입률을 변화시켜 시멘트 모르타르의 강도 및 흡수 특성을 검토하였다. 연구결과, 시멘트 모르타르 제품을 제조할 때 슬러지를 골재에 10% 정도 대체하여 혼입하게 되면 기존의 시멘트 모르타르 제품보다 향상된 품질의 제품이 생산될 수 있는 것이 확인되었다.

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • 제12권1호
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.

석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성 (A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge)

  • 최훈국;정은혜;곽은구;강철;서정필;김진만
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2006년도 춘계학술논문 발표대회 제6권1호
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

시멘트계 바탕 바름재용 현무암 석분슬러지 모르타르의 경화 특성 (Hardened properties of the cement based Basalt powder sludge mortar for surface preparation)

  • 장명훈;최희복
    • 한국건축시공학회지
    • /
    • 제15권5호
    • /
    • pp.451-456
    • /
    • 2015
  • 본 연구는 시멘트계 바탕 바름재에 사용되는 바닷모래를 대체하기 위한 재료로서 현무암 가공과정에서 발생되는 현무암 석분슬러지를 재활용하기 위해 현무암 석분슬러지를 사용한 경화모르타르의 특성(연도변화, 응결경화, 흡수계수, 건조수축, 그리고 부착강도 실험)을 평가하였다. 현무암 석분슬러지를 사용한 경화모르타르는 콘크리트 바탕 바름재에 사용되는 기존의 보통모르타르의 특성과 유사하거나 좀 더 향상된 성능을 보였다. 그러나, 현무암 석분슬러지를 사용한 경화모르타르는 보통 모르타르보다 재령 8~9일 이후 건조수축이 증가되었고 부착강도는 감소되었다. 그러나 현무암 석분슬러지를 사용한 경우, KS F 4716 '시멘트계 바탕 바름재'에서 요구하는 최소 품질 규준은 만족하였다.

현무암석분 슬러지를 재활용한 드라이몰탈의 기초적 성능평가 (Basic Performance Evaluation of Dry Mortar Recycled Basalt Powder Sludge)

  • 고동우;최희복
    • 한국건축시공학회지
    • /
    • 제13권2호
    • /
    • pp.131-138
    • /
    • 2013
  • 본 연구는 최근 제주도 지역에서 현무암 가공과정에서 발생되는 폐기물인 석분슬러지를 재활용하기 위한 방안으로써 일반 시멘트몰탈에 사용되는 잔골재 대신에 현무암 석분슬러지의적용가능성에 대해 실험하였다. 드라이 몰탈의 재료로서의 기초적인 성능을 평가하기 위해 압축강도와 휨강도를 평가하고, SEM을 통해 미세구조를 관찰하였다. 현무암 슬러지 대체율 21%까지는 압축 및 휨강도는 증가하였으며, 보통 드라이몰탈보다 약 40% 강도 증진 효과가 있다. 현무암 슬러지의 대체율 약 20%이상에서는 상대적으로 수화생성물이 적게 생성되었다. 본 연구를 통해 현무암 슬러지 폐기물의 활용성을 확인할 수 있었으며, 콘크리트 2차 제품의 성형에도 가능할 것으로 판단된다.

석분슬러지를 이용한 수중 경화형 에폭시 모르타르의 개발에 관한 기초적 연구 (The Basic Study on the Underwater-Hardening Epoxy Mortar Using Stone Powder Sludge)

  • 정은혜;곽은구;이대경;조성현;배기선;김진만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(II)
    • /
    • pp.409-412
    • /
    • 2005
  • Because the underwater structures are subjected to the deterioration according to use environment, it is necessary to repair and reinforce when the durable performances are considered in structures. In generally, epoxy mortar is used to repair materials of underwater concrete. It is divided epoxy and filler which is organized cement and sand. Cement can be replaced by stone powder sludge in waste because the grading of stone powder sludge in drying state has similar to that of cement. As result of study, it is possible that stone powder sludge can be applied for replacement materials of cement in epoxy mortar, because the strength is not different when filler in epoxy mortar is alternated stone powder sludge.

  • PDF

Recycling of Stainless Steel Grinding Sludge

  • Shimizu, Toru;Hanada, Kotarou;Adachi, Satoru;Katoh, Masahito;Hatsukano, Kanichi;Matsuzaki, Kunio
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.95-96
    • /
    • 2006
  • Stainless steel sludge is generated as a waste in the grinding process, and the possibility of recycling stainless steel is considered here. In this study, we considered the possibility of using the stainless steel sludge as metal powder for MIM or raw material for metal foam. For the MIM process, the metal powder will need some improvement, and flotation and spheroidizing processes of the sludge are necessary. For fabrication of the metal foam, untreated sludge can be used, and steel foam about 90% porosity is produced.

  • PDF