• Title/Summary/Keyword: sludge digestion

Search Result 287, Processing Time 0.023 seconds

Startup of Microbial Electrolysis Cells with different mixing ratio of Anaerobic Digested Sludge and Buffer solution (혐기성소화 슬러지 비율에 따른 미생물전기분해전지의 식종 특성)

  • Song, Geunwuk;Baek, Yunjeong;Seo, Hwijin;Jang, Hae-Nam;Chung, Jae Woo;Lee, Myoung-Eun;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.51-59
    • /
    • 2019
  • In this study, the influence of anaerobic digested sludge and 50 mM PBS (phosphate buffer solution) mixing ratio (1:1, 1:2, 1:3, 1:4, 1:5, 1:6, 1:7) on hydrogen production and inoculation period were examined. MECs were operated in fed-batch mode with an applied voltage of 0.9 V. As a result, in the 1:1 mixing ratio reactor, 9.8-20.9 mL of hydrogen was produced with the highest hydrogen content of 66.8-79.6%. Hydrogen gas production and power density increased from after 12 days of inoculation for the 1:1 mixing ratio reactor. In case of 1:2, 1:3 and 1:4 mixing ratio reactor, the hydrogen gas production was 3.7-7.1 mL and the hydrogen gas content was 5.8-65.8%. The hydrogen gas yield in 1:5, 1:6 and 1:7 ratio reactors, was 0.50-0.69 mL and hydrogen content range was 1.8-7.1%. The mixing ratio was found to be suitable for hydrogen production and inoculation period by mixing ratio up to 1:4.

Biogas Production from Sewage Sludge in 30L Microbial Electrolysis Cell (30L 미생물전기분해전지의 하수슬러지로부터 바이오가스 생산 특성)

  • Lee, Myoung-Eun;Ahn, Yongtae;Shin, Seung Gu;Seo, Sun-Chul;Chung, Jae Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.25-33
    • /
    • 2019
  • Operating characteristics of a 30 L microbial electrolysis cell (MEC) for producing biogas from sewage sludge was studied. During the 32-day inoculation period, carbon dioxide concentration decreased and methane concentration increased with operating time, and the overall methane content of biogas was 69.1% with a production rate of 171.6 mL CH4/L·d. In fed-batch experiments for 6 operating cycles, CH4 concentration of 66.5~77.2% was obtained at a production rate of 184.9~372.9 mL CH4/L·d, COD, TS and VS removal efficiency ranged from 28.2 to 42.1%, 20.7 to 37.5% and 18.5 to 36.9%, respectively. The MEC system was observed to be stabilized as operating cycles were repeated after inoculation. In the last operating cycle, 5221 mL/L of methane was produced with CH4 yield of 316.7 L CH4/kg CODrem, and the energy recovery was 73%.

The Effect of Pre-treatment on the Anaerobic Digestion of waste Activated Sludge (하수슬러지의 혐기적 소화효율 향상을 위한 전처리 효과)

  • Kang, Chang-Min;Kim, Bong-Keun;Kim, In-Su;Kim, Byung-Tae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.1
    • /
    • pp.90-98
    • /
    • 2001
  • The slow degradation rate of sewage sludge in anaerobic digesters is due to the rate limiting step of sludge hydrolysis. Therefore, the pre-treatment process had been carried out using acidic(pH 1.5, 3, 4, 5) and alkaline(pH9, 10, 13), thermal(50, 100, 150, $200^{\circ}C$) and ultrasonic treatment(400W, 20kHz, 15, 20, 25, 30, 35, 40, 50, 60min). In the best conditions of each treatment, the SCOD ratio(%) of treated/untreared samples were increased 102% in acid(pH5), 986% in alkali(pH13), 959% in thermal($200^{\circ}C$) and 1123% in ultrasonic(35min) treatment. As the result, the ultrasonic treatment was most effective, followed by alkali, thermal, acidic treatment. In the effects of total gas productivity, the thermal($200^{\circ}C$) pretreatment was the highest, followed by thermal($150^{\circ}C$), ultrasonic(90min), alkaline(pH9) and ultrasonic(50min).

  • PDF

Determination of Ultimate Biodegradability and Multiple Decay Rate Coefficients in Anaerobic Batch Degradation of Organic Wastes (유기성폐기물의 회분식 혐기성 최종생분해도와 다중분해속도 해석)

  • Kang, Ho;Shin, Kyung-Suk;Richards, Brian
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.555-561
    • /
    • 2005
  • A new graphical method was developed to separate two distinctive decay rate coefficients($k_1$ and $k_2$) at their respective degradable substrate fractions($S_1 and $S_2$). The mesophilic batch reactor showed $k_1$ of $0.151\;day^{-1}$ for wasted activated sludge(WAS), $0.123\;day^{-1}$ for thickened sludge(T-S), $0.248{\sim}0.358\;day^{-1}$ at S/I ratio of $1{\sim}3$ for sorghum and $0.155{\sim}0.209\;day^{-1}$ at S/I ratio $0.2{\sim}1.0$ for swine waste, whereas their long term batch decay rate coefficients($k_2$) were $0.021\;day^{-1}$, $0.001\;day^{-1}$, $0.03\;day^{-1}$ and $0.04\;day^{-1}$ respectively. At least an order of magnitude difference between $k_1$ and $k_2$ was routinely observed in the batch tests. The portion of $S_1$, which degrades with each $k_1$ appeared 71% for WAS, 39% for T-S, 90% for sorghum, and $84{\sim}91%$ at S/I ratio of $0.2{\sim}1.0$ for swine waste. Ultimate biodegradabilities of 50% for WAS, 40% of T-S, $82{\sim}92%$ for sorghum, and $81{\sim}89%$ for swine waste were observed.

Physico-chemical and biological characteristic analysis of stratified anaerobic granules in a full-scale UASB reactor (실규모 UASB반응조 내부 계층화된 혐기성 그래뉼의 물리화학적 & 생물학적 특성 조사)

  • Jo, Hongmok;Kim, Minsang;Shin, Seung Gu;Cho, Si-Kyung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • In this study, the physico-chemical and biological characteristics of anaerobic granular sludge at different heights of a full-scale UASB reactor (UASBr) were investigated. Granular sludge was taken from 1 m, 2 m, and 3 m above the ground level in the UASBr. The morphological analysis showed that the upper part had bigger granules and the lower part had rounder granules. The ANOVA test confirmed that the mean size and the roundness of the granules had statistically significant difference along the height at 95% confidence level, and there was a significant negative linear relationship between the size and roundness (r=-0.40, p<0.05). A SMA test using acetic, propionic and butyric acids showed that granules from 2 m height had the highest specific methanogenic activity. The EPS contents were also unequal to each height, with 2 m showing the highest content. These findings could be helpful to understand the different characteristics of stratified anaerobic granules in full-scale UASBr and maintain the reactor performance.

혐기성 생물막 반응기의 기질 농도 변화에 따른 생물막 부착 특성 관찰

  • Lee, Seung-Ran;Lee, Deok-Hwan;Kim, Do-Han;Park, Yeong-Sik;Song, Seung-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.521-524
    • /
    • 2001
  • The anaerobic continuous reactor, which was filled with a sludge of anaerobic digestion from Sooyoung sewage treatment plant, was supplied with synthetic wastewater of various concentration. After changing to substrate concentration, 디 1is research indicated that attached biomass was kept constant after attachment 23 days. In SEM photographs. shape and structure of biofilm could be observed, but bacteria species and methanogens were not identified. A large number of methanogenic bacteria were showed on the surface of PE substratum by fluorescence under 480nm of radiation.

  • PDF

Anaerobic Digestion of Distillery Wastewater in a Two-phase UASB System (이상 UASB 공정을 이용한 주정폐수의 혐기성소화)

  • Shin, Hang Sik;Bae, Byung Uk;Paik, Byung Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.185-192
    • /
    • 1990
  • A two-phase UASB system was operated for high-rate treatment of concentrated distillery wastewater. The phase separation was obtained by adjusting pH in each reactor. When influent SS concentration was 4.1/g/l, the first phase UASB reactor was effectively operated up to the loading rate of 16.5kg $COD/m^3.day$, producing 3.9g HAc/l.day. In the methanogenic UASB reactor, loading rate up to 44kg $COD/m^3.day$ could be applied while removing 80% of influent COD with a specific gas production of 16.5 l/l. day. After the formation granular sludge in both reactors, it was possible to maintain the appropriate pH in the first phase only by recirculating the effluent from methanogenic phase without the addition of alkaline chemicals.

  • PDF

Waste treatment with the pilot scale ATAD and EGSB pig slurry management system followed by sequencing batch treatment

  • Lee, Young-Shin;Han, Gee-Bong
    • Environmental Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2015
  • Experiments for highly concentrated contaminants in pig waste slurry were carried out for the feasibility test of a pilot-scale innovative process scheme of engaging autothermal thermophilic aerobic digestion (ATAD) and expended granular sludge bed (EGSB) followed by sequencing batch reactor (SBR) system. Contaminants in pig waste slurry such as organic substance, total nitrogen (TN), ammonia nitrogen and total phosphorus (TP) contents were successfully reduced in the system. Total volatile solids (TVS) and chemical oxygen demands (COD) for organic matter in the feed were 32.92 g/L and 42.55 g/L respectively, and they were reduced by about 98.7% and 99.2%, respectively in the system. The overall removal efficiencies for TN and ammonium nitrogen were found to be 98.1 and 98.5%, respectively. The overall removal efficiency for total phosphorus was also found to be 92.5%. Faecal coliform density was reduced to <$1.2{\times}10^4CFU/g$ total solids. Biogas and $CH_4$ were produced in the range of 0.39-0.85 and $0.25-0.62m^3/kg$ [VS removed], respectively. The biogas produced in the system comprised of $295{\pm}26ppm$ (v/v) [$H_2S$].

Direct membrane filtration of wastewater under very short hydraulic retention time

  • Yoon, Seong-Hoon
    • Advances in environmental research
    • /
    • v.7 no.1
    • /
    • pp.39-52
    • /
    • 2018
  • Direct membrane filtration (DMF) of wastewater has many advantages over conventional biological wastewater treatment processes. DMF is not only compact, but potentially energy efficient due to the lack of biological aeration. It also produces more biosolids that can be used to produce methane gas through anaerobic digestion. Most of ammoniacal nitrogen in wastewater is preserved in effluent and is used as fertilizer when effluent is recycled for irrigation. In this study, a technical feasibility of DMF was explored. Organic and nitrogen removal efficiencies were compared between DMF and membrane bioreactor (MBR). Despite the extremely high F/V ratio, e.g., $14.4kg\;COD/m^3/d$, DMF provided very high COD removal efficiencies at ~93%. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) were less in DMF sludge, but membrane fouling rate was far greater than in MBR. The diversity of microbial community in DMF appeared very narrow based on the morphological observation using optical microscope. On the contrary, highly diverse microbial community was observed in the MBR. Microorganisms tended to form jelly globs and attach on reactor wall in DMF. FT-IR study revealed that the biological globs were structurally supported by feather-like materials made of secondary amines. Confocal laser scanning microscopy (CLSM) study showed microorganisms mainly resided on the external surface of microbial globs rather than the internal spaces.

Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using Electrochemical Bioreactor

  • Jeon, Bo-Young;Kim, Sung-Yong;Park, Yong-Keun;Park, Doo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1665-1671
    • /
    • 2009
  • Anaerobic digestion sludge was cultivated in an electrochemical bioreactor (ECB) to enrich the hydrogenotrophic methanogens. A modified graphite felt cathode with neutral red (NR-cathode) was charged with electrochemical reducing power generated from a solar cell. The methane and carbon dioxide collected in a Teflon bag from the ECB were more than 80 ml/l of reactant/day and less than 20 ml/l of reactant/day, respectively, whereas the methane and carbon dioxide collected from a conventional bioreactor (CB) was around 40 ml/l of reactant/day, respectively. Moreover, the maximal volume ratios of methane to carbon dioxide (M/C ratio) collected in the Teflon bag from the ECB and CB were 7 and 1, respectively. The most predominant methanogens isolated from the CB on the $20^{th}$, $80^{th}$, and $150^{th}$ days of incubation were hydrogenotrophs. The methanogenic diversity analyzed by temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region was higher in the ECB than in the CB. The DNA extracted from the TGGE bands was more than 95% homologous with hydrogenotrophic methanogens in the ECB, but was an aceticlastic methanogen in the CB. In conclusion, the ECB was demonstrated as a useful system for enriching hydrogenotrophic methanogens and increasing the M/C ratio of the gas product.