DOI QR코드

DOI QR Code

Physico-chemical and biological characteristic analysis of stratified anaerobic granules in a full-scale UASB reactor

실규모 UASB반응조 내부 계층화된 혐기성 그래뉼의 물리화학적 & 생물학적 특성 조사

  • Jo, Hongmok (Department of environmental science, Dongguk University) ;
  • Kim, Minsang (Department of environmental science, Dongguk University) ;
  • Shin, Seung Gu (Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University) ;
  • Cho, Si-Kyung (Department of environmental science, Dongguk University)
  • 조홍목 (동국대학교 바이오환경과학과) ;
  • 김민상 (동국대학교 바이오환경과학과) ;
  • 신승구 (경상국립대학교 에너지공학과 미래융복합기술연구소) ;
  • 조시경 (동국대학교 바이오환경과학과)
  • Received : 2021.11.28
  • Accepted : 2021.12.09
  • Published : 2021.12.30

Abstract

In this study, the physico-chemical and biological characteristics of anaerobic granular sludge at different heights of a full-scale UASB reactor (UASBr) were investigated. Granular sludge was taken from 1 m, 2 m, and 3 m above the ground level in the UASBr. The morphological analysis showed that the upper part had bigger granules and the lower part had rounder granules. The ANOVA test confirmed that the mean size and the roundness of the granules had statistically significant difference along the height at 95% confidence level, and there was a significant negative linear relationship between the size and roundness (r=-0.40, p<0.05). A SMA test using acetic, propionic and butyric acids showed that granules from 2 m height had the highest specific methanogenic activity. The EPS contents were also unequal to each height, with 2 m showing the highest content. These findings could be helpful to understand the different characteristics of stratified anaerobic granules in full-scale UASBr and maintain the reactor performance.

본 연구에서는 실규모 UASB 소화조에서 높이에 따른 그래뉼 슬러지의 물리화학·생물학적 특성에 대해 조사하였다. 혐기성 그래뉼은 UASB 반응조에서 지상으로부터 1 m 높이별(1 m, 2 m, 3 m)로 채취하였다. 형태학적 분석결과, 그래뉼의 크기는 소화조의 상단부로 갈수록 커졌고 원형율(roundness)은 하단부에서 더 둥근 형태를 나타내었다. ANOVA 검정 결과, 그래뉼의 평균 크기와 원형율은 95% 신뢰수준에서 통계적으로 유의한 차이를 보였고 두 변수 사이에 유의한 음의 상관관계가 있는 것으로 나타났다(r=-0.40, p<0.05). 아세트산, 프로피온산, 부틸산을 기질로 사용한 SMA test 결과에서는 2 m 높이에서 채취한 그래뉼의 비메탄활성도가 가장 높았다. EPS의 경우 높이에 따라 함량이 다양하게 나타났으며 2 m에서 가장 높았다. 본 실험의 결과를 통해 높이별 그래뉼 슬러지의 특성을 이해하고 소화조의 유지관리 및 성능 개선에 기초 자료로 활용할 수 있을 것으로 판단된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 미세플라스틱 측정 및 위해성평가 기술개발사업의 지원을 받아 연구되었습니다.(과제번호: RE202101439)

References

  1. Cho, S. K., Kim, D. H., Kim, M. H., Shin, H. S. and Oh, S. E., "Enhanced activity of methanogenic granules by low-strength ultrasonication", Bioresource Technology, 120, pp. 84~88. (2012). https://doi.org/10.1016/j.biortech.2012.06.046
  2. Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M. and Lettinga, G. "A review: The anaerobic treatment of sewage in UASB and EGSB reactors", Bioresource Technology, 65(3), pp. 175~190. (1998). https://doi.org/10.1016/S0960-8524(98)00046-7
  3. Liu, Y., Xu, H. L., Yang, S. F. and Tay, J. H., "Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor", Water Research, 37(3), pp. 661~673. (2003). https://doi.org/10.1016/S0043-1354(02)00351-2
  4. Del Nery, V., Pozzi, E., Damianovic, M. H., Domingues, M. R. and Zaiat M., "Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater", Bioresource Technology, 99(6), pp. 2018~2024. (2008). https://doi.org/10.1016/j.biortech.2007.03.019
  5. Sun, J., Dai, X., Wang, Q., Pan, Y., Ni, B. J., "Modelling Methane Production and Sulfate Reduction in Anaerobic Granular Sludge Reactor with Ethanol as Electron Donor", Sci Rep., 6, p. 35312. (2016). https://doi.org/10.1038/srep35312
  6. Makse, H. A., Havlin, S., King, P. R. and Stanley, H. E., "Spontaneous stratification in granular mixtures", Nature, 386(6623), p. 379. (1997). https://doi.org/10.1038/386379a0
  7. Williams, J. C., "The segregation of particulate materials. A review", Powder Technology, 15(2), pp. 245~251. (1976). https://doi.org/10.1016/0032-5910(76)80053-8
  8. Liu, Y., Xu, H. L., Show, K. Y. and Tay, J. H., "Anaerobic granulation technology for wastewater treatment", World Journal of Microbiology and Biotechnology, 18, pp. 99~113. (2002). https://doi.org/10.1023/A:1014459006210
  9. Koster, I. W. and Cramer, A. "Inhibition of methanogenesis analysis of bacterial morphotypes in microbial communities", Microbial Ecology, 41(3), pp. 173~194. (1987). https://doi.org/10.1007/s002480000004
  10. Herbert, H. P. and Fang, H. L., "Effect of pH on hydrogen production from glucose by a mixed culture", Bioresource Technology, 82(1), pp. 87~93. (2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  11. Bin, Z., Baosheng, S., Min, J., Taishi, G. and Zhenghong, G., "Extraction and analysis of extracellular polymeric substances in membrane fouling in submerged MBR", Desalination, 227(1-3), pp. 286~294. (2008). https://doi.org/10.1016/j.desal.2007.06.032
  12. Cho, S. K., Shin, H. S. and Kim, D. H. "Waste activated sludge hydrolysis during ultrasonication: Two-step disintegration", Bioresource Technology, 121, pp. 480~483. (2012). https://doi.org/10.1016/j.biortech.2012.07.024
  13. Liu, J., Dazzo, F. B., Glagoleva, O., Yu, B. and Jain, A. K., "CMEIAS: A Computer-Aided System for the Image Analysis of Bacterial Morphotypes in Microbial Communities", Microbial ecology, 41(3), pp. 173~194. (2001) https://doi.org/10.1007/s002480000004
  14. Shin, S. G., Ahn, Y., Park, C., Choi, Y. K., Cho, H. M. and Cho, S. K., "Size and morphological analysis of ultrasonicated hydrogen-producing granules using a simple method", International Journal of Hydrogen Energy, 44(4), pp. 2246~2252. (2019) https://doi.org/10.1016/j.ijhydene.2018.07.032
  15. Tay, J.-H. and Yan, Y.-G., "Influence of substrate concentration on microbial selection and granulation during start-up of upflow anaerobic sludge blanket reactors", Water Environment Research, 68, pp. 1140~1150. (1996). https://doi.org/10.2175/106143096X128540
  16. Jerald, A., Lalman, S. R. C., Moon, C. M. and Kim, D. H., Elucidating acetogenic H2 consumption in dark fermentation using flux balance analysis", Bioresource Technology, 146, pp. 775~778. (2013). https://doi.org/10.1016/j.biortech.2013.07.125
  17. Chang, I. S., Kim, J. S, Lee, C. H. and Park, K. S., "A Study on the Inhibition of Anaerobic Digestion for Alcohol Distillery Wastes", Applied Chemistry for Engineering, 4(3), pp. 576~582. (1993).
  18. Singh, K. S., Harada, H. and Viraraghavan, T., "Low-strength wastewater treatment by a UASB reactor", Bioresource Technology, 55(3), pp. 187~194. (1996). https://doi.org/10.1016/0960-8524(96)86817-9
  19. Masse, D. I., Gilbert, Y., Saady, N. M. C. and Liu, C., "Low-temperature anaerobic digestion of swine manure in a plug-flow reactor", Environmental Technology, 34(18), pp. 2617~2624. (2013). https://doi.org/10.1080/09593330.2013.781229
  20. Gorris, L. G. M., van Deursen, J. M. A., van der Drift, C., and Vogels, G. D., "Influence of waste water composition on biofilm development in laboratory methanogenic fluidized bed reactors", Applied Microbiology and Biotechnology, 29, pp. 95~102. (1988). https://doi.org/10.1007/BF00258358
  21. Morgan, J. W., Evison, L. M. and Forster, C. F., "The internal architecture of anaerobic sludge granules", Journal of Chemical Technology & Biotechnology, 50(2), pp. 211~226. (1991).
  22. Dignac, M.-F., Urbain, V., Rybacki, D., Bruchet, A., Snidaro, D. and Scribe, P., "Chemical description of extracellular polymers: Implication on activated sludge floc structure", Water Science and Technology, 38(8-9). pp. 45~53. (1998). https://doi.org/10.1016/S0273-1223(98)00676-3
  23. Mu, Y. and Yu, H.-Q., "Biological hydrogen production in a UASB reactor with granules. I: Physicochemical characteristics of hydrogen-producing granules", Biotechnology and bioengineering, 94, pp. 980~987. (2006). https://doi.org/10.1002/bit.20924
  24. Sheng, G. P., Yu, H. Q. and Li, X. Y., "Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review", Biotechnology advances, 28(6), pp. 882~894. (2010). https://doi.org/10.1016/j.biotechadv.2010.08.001