• Title/Summary/Keyword: slow and fast subsystems

Search Result 5, Processing Time 0.019 seconds

Trajectory tracking and active vibration suppression of a smart Single-Link flexible arm using a composite control design

  • Mirzaee, E.;Eghtesad, M.;Fazelzadeh, S.A.
    • Smart Structures and Systems
    • /
    • v.7 no.2
    • /
    • pp.103-116
    • /
    • 2011
  • This paper is concerned with the trajectory tracking and vibration suppression of a single-link flexible arm by using piezoelectric materials. The dynamics of a single flexible arm with PZT patches as sensor and actuator is derived using extended Hamilton's principle. Resulting equations show that the coupled beam dynamics including beam vibration and its rigid in-plane rotation takes place in two different time scales. By using singular perturbation theory, the system dynamics is divided into two subsystems. Then, a composite control scheme is elaborated that makes the orientation of the arm track a desired trajectory while suppressing its vibration. The proposed controller has two parts: one is a tracking controller designed for the slow (rigid) subsystem, and the other one is a stabilizing controller for the fast (flexible) subsystem. The outputs considered for the system are angular position of the hub and voltage of the sensor mounted on the structure. To avoid requiring further measurements of beam vibration and also angular velocity of the hub for the fast and slow control laws, respectively, two sliding mode observers for estimating the unknown states are also designed.

Wavelet-based Analysis for Singularly Perturbed Linear Systems Via Decomposition Method (웨이블릿 및 시스템 분할을 이용한 특이섭동 선형 시스템 해석)

  • Kim, Beom-Soo;Shim, Il-Joo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1270-1277
    • /
    • 2008
  • A Haar wavelet based numerical method for solving singularly perturbed linear time invariant system is presented in this paper. The reduced pure slow and pure fast subsystems are obtained by decoupling the singularly perturbed system and differential matrix equations are converted into algebraic Sylvester matrix equations via Haar wavelet technique. The operational matrix of integration and its inverse matrix are utilized to reduce the computational time to the solution of algebraic matrix equations. Finally a numerical example is given to demonstrate the validity and applicability of the proposed method.

[ $H_{\infty}$ ] Control for a Class of Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.501-507
    • /
    • 2007
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ control of a class of singularly perturbed nonlinear systems with an exogenous disturbance, using the successive Galerkin approximation (SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale in the spirit of the general theory of singular perturbation. Two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

$H_{\infty}$ Composite Control for Singularly Perturbed Nonlinear Systems via Successive Galerkin Approximation

  • Kim, Young-Joong;Kim, Beom-Soo;Shin, Eun-Chul;Yoo, Ji-Yoon;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.407-412
    • /
    • 2004
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of singularly perturbed nonlinear systems with a exogenous disturbance, using the successive Galerkin approximation(SGA). The singularly perturbed nonlinear system is decomposed into two subsystems of a slow-time scale and a fast-time scale via singular perturbation theory, and two $H_{\infty}$ control laws are obtained to each subsystem by using the SGA method. The composite control law that consists of two $H_{\infty}$ control laws of each subsystem is designed. One of the purposes of this paper is to design the closed-loop $H_{\infty}$ composite control law for the singularly perturbed nonlinear systems via the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

  • PDF

Design of a new sliding mode controller for uncertain multivariable systems using continuous-time switching dynamics (연속 시간 스위칭 다이나믹을 이용한 불확실한 다변수 계통에 대한 새로운 슬라이딩 모드 제어기 설계)

  • Kim, Dong-Sik;Seo, Ho-Joon;Seo, Sam-Jun;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.1
    • /
    • pp.9-13
    • /
    • 1996
  • 슬라이딩 모드 제어기의 실현시 발생하는 고주파 chattering 현상을 제거하기 위하여 본 논문에서는 스위칭 표면 행렬의 Range-space 동특성을 이용한 연속 시간 스위칭 다이나믹을 제안한다. 전체 폐루프 시스템은 정칙 변환에 의해 빠른 부시스템과 느린 부시스템으로 분해되어, 결국 전체 폐루프 시스템의 고유치는 각각 스위칭 표면 행렬의 Range-space와 Null-space의 동특성을 지배하는 부시스템들의 고유치들로 구성됨을 보인다. 그리고, 정합된 불확실성이 존재하는 경우 제안된 스위칭 다이나믹을 가진 제어 시스템의 응답은 일정 시간이 경과된 후 스위칭 평면의 임의의 영역으로 균일하게 유계된다는 것을 증명한다. 또한, 제어 입력의 크기에 대한 제약성을 만족하면서도 전체 제어 시스템의 정상 상태 오차를 감소시키기 위하여 두개의 스위칭 다이나믹을 도입한 수정된 슬라이딩 모드제어기를 제안한다.

  • PDF