• Title/Summary/Keyword: slope variation

Search Result 550, Processing Time 0.032 seconds

Spatio-Temporal Variation of Soil Respiration and Its Association with Environmental Factors in Bluepine Forest of Western Bhutan

  • Cheten Thinley;Baghat Suberi;Rekha Chhetri
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.13-19
    • /
    • 2023
  • We investigated Soil respiration in Bluepine forest of western Bhutan, in relation to soil temperature, moisture content and soil pH and it was aimed at establishing variability in space and time. The Bluepine forest thrives in the typical shallow dry valleys in the inter-montane Bhutan Himalaya, which is formed by ascending wind from the valley bottom, which carries moisture from the river away to the mountain ridges. Stratified random sampling was applied and the study site was classified into top, mid, low slope and further randomized sample of n=20 from 30 m×30 m from each altitude. The overall soil respiration mean for the forest was found 2248.17 CO2 g yr-1 and it is ~613.58 C g yr-1. The RS from three sites showed a marginal variation amongst sites, lower slope (2,309 m) was 4.64 μ mol m-2 s-1, mid slope (2,631 m) was 6.78 μ mol m-2 s-1 and top slope (3,027 m) was 6.33 μ mol m-2 s-1 and mean of 5.92 μ mol m-2 s-1, SE=0.25 for the forest. Temporal distribution and variations were observed more pronounced than in the space variation. Soil respiration was found highest during March and lowest in September. Soil temperature had almost inverse trend against soil respiration and dropped a low in February and peak in July. The moisture in the soil changed across months with precipitation and pH remained almost consistent across the period. The soil respiration and soil temperature had significant relationship R2=-0.61, p=0.027 and other variables were found insignificant. Similar relationship are reported for dry season in a tropical forest soil respiration. Soil temperature was found to have most pronounced effect on the soil respiration of the forest under study.

A Study on the Probabilistic Stability Analysis of Slopes (확률론적 사면안정 해석기법에 관한 연구)

  • Kim, Ki-Young;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.101-111
    • /
    • 2006
  • Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of them are connected to the variability of soil properties involved in the analysis. In this paper, a numerical procedure of probabilistic analysis of slope stability is presented based on Spencer's method of slices. The deterministic analysis is extended to a probabilistic approach that accounts fur the uncertainties and spatial variation of the soil parameters. The procedure is based on the first-order reliability method to compute the Hasofer-Lind reliability index and Monte-Carlo Simulation. A probabilistic stability assessment was performed to obtain the variation of failure probability with the variation of soil parameters in homogeneous and layered slopes as an example. The examples give insight into the application of uncertainty treatment to the slope stability and show the impact of the spatial variability of soil properties on the outcome of a probabilistic assessment.

Numerical Study on the Variation of Slope Stability for the Embankment Formed by Unsaturated Dredging Soils during Rainfall (강우시 불포화 준설토로 형성된 제방의 사면안정성 변화에 대한 수치해석적 연구)

  • You, Seung-Kyong;Song, Young-Suk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.71-79
    • /
    • 2011
  • In this study, the variation of wetting front and ground water level at the embankment constructed in the Saemangeum area were predicted considering rainfall duration times and the slope stability analysis of the embankment was carried out according to prediction results of wetting front and ground water level. The embankment was formed by dredging soils. A suction stress, a cohesion and a frictional angle of dreding soils measured by soil tests were applied to estimate the unsaturated soil properties. According to the analysis results of the wetting front and the ground water level for various rainfall duration time, the wetting front began to descend from the upper part of embankment at the beginning time of rainfall and after 1 hour of rainfall duration time. After that, the ground water level continued to ascend as the rainfall duration time was getting longer. After rainfall, the ground water level was distributed at a certain depth, and the ground water level was gradually descending as time goes by. According to the slope stability analysis of the embankment considering the variation of the wetting front and the ground water level, the safety factor of slope was rapidly reduced as the rainfall began to infiltrate into the ground, and the minimum safety factor of slope was estimated after 24 hours of rainfall duration time. Meanwhile, the safety factor of slope was increased with regaining the matric suction in the ground after rainfall.

The Computation of Reinforcement Length of Afforestation Slope (사면녹화 보강토공법의 보강재길이 산정에 관한 연구)

  • Park, Sik-Choon;Nam, Kwang-On;Kim, Jong-Hwan;Lee, Soo-Yang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1302-1308
    • /
    • 2010
  • This study the change of the safety factor before and after the reinforcement were compared by performing the parameter research based on the limit equilibrium analysis regarding the same cross section after carrying out the safety factor before the reinforcement on the virtual section in order to observe the change of the safety factor of the slop reinforced with the slope planting reinforced earth, and the variation of the safety factor according to the increase of the length of the reinforcement materials and the change of the slope height was analyzed. As the result, the reinforcement effect was insignificant at no more than 0.6 of L/H, the reinforcement length ratio when the reinforcement length was increased, as the increase of the safety factor was slow comparing with the non-reinforced slope. At 3.0m of the slope height, reinforcement on the slope is not necessary, and at 3.0m to 5.0m of the slope height, the inclination was not influencing at no less than 0.6 of L/H. At 5.0m to 9.0m of the slope height, the safety factor was mostly secured on the slope at 0.8 of L/H and the over-reinforced slope appeared at no less than 1.0 of L/H. Also, the safety factor increased as the slope height increases and the slope gets steeper till 0.8 of L/H, but the slope steepness affects more on the increase of the safety factor than the reinforcement material, as the reinforcing force by the reinforcement material became steady.

  • PDF

A Case Study about the Slope Collapse and Reinforcement Method on the Infinite Slope (무한사면에서의 사면붕괴와 보강대책 사례연구)

  • You Byung-Ok;Hong Jung-Pyo;Jun Jong-Hern;Lee Tae-Sun;Min Kyoung-Nam
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.146-155
    • /
    • 2006
  • The target slope of this study, formed during the construction of highway, is the very high infinite slope where sliding began along the discontinuity. Although an attempt was made to stabilize the upper part of the slope by installing the rock anchors, large scale failure was occurred at the lower part if the reinforced area. Afterwards, subsequent failures were observed two times. To investigate the cause of the failure, residual shear strength was measured by performing the direct shear test of rock specimen of the site. The anchor design was based on the pull-out test. Considering the slope surface where the undulation was severe and the variation of strength was very large, buttressing was used to obtain the required anchoring capacity.

A Numerical Study on the Behavior of Convex and Concave Slopes in Plan View (볼록 및 오목 사면 형상에 따른 거동에 대한 수치해석 모형 연구)

  • 정우철;박형동;박연준;유광호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.213-220
    • /
    • 2000
  • Numerical modeling of cut slope has some limits in simulating the real slopes. In the case of 2D analysis of slope stability, it is assumed that slope is simply straight even when it is concave or convex in plan view. In this study, 3D analysis in curved shape slopes has been conducted for the comparison with 2D analysis in terms of failure mode and factor of safety. For this, 3D analysis by FLAC3D was compared with 2D analysis in plane strain condition and axi-symmetric model condition by FLAC. It was also observed how safety factors of slopes were affected by the variation of the tensile strength and cohesion, which are important variables to decide whether the slope fails or not. 2D analysis of concave slopes under plane strain condition showed much smaller safety factors by 16-40 % errors depending on the radius of curvature of slopes, compared to the more realistic values from 3D analysis. In case of convex slopes, the lower values by 7-10 % has been reported. 2D analysis of axi-symmetric model showed also smaller safety factors by 6-10 % and by 2-4 %, in case of concave and convex slopes, respectively. Such results are expected to contribute to the better understanding of failure process and could be applied for improved design of slopes.

  • PDF

In-situ Monitoring of Matric Suctions in a Weathered Soil Slope (풍화토 사면에서 강우로 인한 간극수압 변화에 대한 실험연구)

  • 이인모;조우성;김영욱;성상규
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2003
  • Rainfall-induced landslides in a weathered granite soil slope usually happen on shallow slip surfaces above the groundwater table. The pore-water pressure of soil above the groundwater table is usually negative. This negative pore-water pressure (or matric suction) has been found to make a large contribution to the slope stability. Therefore, the variation of in-situ matric suction profiles with time elapse in a soil slope should be understood. In this study, a field measurement program was carried out from June to August, 2001 in order to monitor in-situ matric suctions and volumetric water contents in a weathered granite soil slope. Finite-element transient seepage analyses are also conducted using SEEP/W. The influence of climatic conditions on the variation of in-situ matric suctions could be found to decrease rapidly with the change of depth. It could be found that decrement of matric suction induced by precipitation is affected not only by the amount and duration of rainfalls but also by the initial matric suction just prior to rainstorms. The soil-water characteristic from the field monitoring tends toward the wetting path of SWCC obtained from the laboratory test.

A Probabilistic Analysis on Logarithmic-Spiral Failure of Slope in Consideration of Load Variance (하중의 분산성을 고려한 대수누선사면 파괴의 확률론적 해석)

  • 정성관;권무남
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 1988
  • Until now, most probabilistic approaches to the slope stability analysis have been accomplished on the arc failure surface without load. In this study, the relationships between the probability of failure and the safety factor are investigated when the shape of failure is logarithmic spiral on the homogeneous slope with ground water level, the probability distributions of the load and the strength parameter of soil being assumed as normal distribution, log-normal distribution and beta distribution. The results obtained are as follows; 1. For the same safety factor, the design of slope is more reasonable by using the probability of failure than by the safety factor because the probability of failure is increased as the coefficient of variation is increased. 2, The safety factor is more reasonably determined by the coefficient of variation of the strength parameter than by the field condition when the safety factor is applied to design of slope.

  • PDF

Reliability analysis of three-dimensional rock slope

  • Yang, X.L.;Liu, Z.A.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1183-1191
    • /
    • 2018
  • Reliability analysis is generally regarded as the most appropriate method when uncertainties are taken into account in slope designs. With the help of limit analysis, probability evaluation for three-dimensional rock slope stability was conducted based upon the Mote Carlo method. The nonlinear Hoek-Brown failure criterion was employed to reflect the practical strength characteristics of rock mass. A form of stability factor is used to perform reliability analysis for rock slopes. Results show that the variation of strength uncertainties has significant influence on probability of failure for rock slopes, as well as strength constants. It is found that the relationship between probability of failure and mean safety factor is independent of the magnitudes of input parameters but relative to the variability of variables. Due to the phenomenon, curves displaying this relationship can provide guidance for designers to obtain factor of safety according to required failure probability.

Device Design Guideline to Reduce the Threshold Voltage Variation with Fin Width in Junctionless MuGFETs (핀 폭에 따른 문턱전압 변화를 줄이기 위한 무접합 MuGFET 소자설계 가이드라인)

  • Lee, Seung-Min;Park, Jong-Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2014
  • In this paper, the device design guideline to reduce the threshold voltage variation with fin width in junctionless MuGFET has been suggested. It has been observed that the threshold voltage variation was increased with increase of fin width in junctionless MuGFETs. To reduce the threshold voltage variation with fin width in junctionless MuGFETs, 3-dimensional device simulation with different gate dielectric materials, silicon film thickness, and an optimized fin number has been performed. The simulation results showed that the threshold voltage variation can be reduced by the gate dielectric materials with a high dielectric constant such as $La_2O_3$ and the silicon film with ultra-thin thickness even though the fin width is increased. Particularly, the reduction of the threshold voltage variation and the subthreshold slope by reducing the fin width and increasing the fin numbers is known the optimized device design guideline in junctionless MuGFETs.