• Title/Summary/Keyword: slope resistance

Search Result 263, Processing Time 0.025 seconds

Critical setback distance for a footing resting on slopes under seismic loading

  • Shukla, Rajesh Prasad;Jakka, Ravi S.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1193-1205
    • /
    • 2018
  • A footing located on slopes possess relatively lower bearing capacity as compared to the footing located on the level ground. The bearing capacity further reduces under seismic loading. The adverse effect of slope inclination and seismic loading on bearing capacity can be minimized by proving sufficient setback distance. Though few earlier studies considered setback distance in their analysis, the range of considered setback distance was very narrow. No study has explored the critical setback distance. An attempt has been made in the present study to comprehensively investigate the effect of setback distance on footing under seismic loading conditions. The pseudo-static method has been incorporated to study the influence of seismic loading. The rate of decrease in seismic bearing capacity with slope inclination become more evident with the increase in embedment depth of footing and angle of shearing resistance of soil. The increase in bearing capacity with setback distance relative to level ground reduces with slope inclination, soil density, embedment depth of footing and seismic acceleration. The critical value of setback distance is found to increase with slope inclination, embedment depth of footing and density of soil. The critical setback distance in seismic case is found to be more than those observed in the static case. The failure mechanisms of footing under seismic loading is presented in detail. The statistical analysis was also performed to develop three equations to predict the critical setback distance, seismic bearing capacity factor ($N_{{\gamma}qs}$) and change in seismic bearing capacity (BCR) with slope geometry, footing depth and seismic loading.

Evaluation of Erosion Resistance Capability with Adhesive Soil Seeding Media (접착성 식생기반재의 침식저항능력 평가)

  • Seong, Si-Yung;Shin, Eun-Cheol
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.2
    • /
    • pp.71-79
    • /
    • 2015
  • This paper describes vegetation based soil-media hydroseeding measures that have been previously applied as slope revegetation methods show problems such as insufficient binding force, drying, and insufficient organic matter. In particular, in the case of slope faces in regions where scattering is severe, a vicious circle exists in which remarkably low vegetation cover rates and increases in withering rates over time lead to further decreases in vegetation cover rates, which lead to further increases in erosion and scattering. Therefore, in the present study, environment friendly soil stabilizers were applied for resistance against erosion or scattering and engineering evaluations such as long-term immersion tests and flow resistance tests were conducted to determine appropriate mixing ratios. According to the results of long-term immersion tests utilizing environment friendly soil stabilizers and existing greening soil based materials, 100% collapse occurred at 30 hours and 40 days in the case of soil stabilizer mixing ratios of 0% and 2%, respectively. While the original form of the samples remained intact until the experiment was completed in the case of mixing ratios exceeding 4% indicating that 2% or higher soil stabilizer mixing ratios could affect the maintenance of forms even under extreme conditions. In addition, artificial rainfall tests were conducted on 40, 45, and 55 degree slope faces to evaluate the structural stability of vegetation based materials. Flow resistance tests were conducted on soil stabilizer mixing ratios of 0, 4, 8% to evaluate erosion resistance capability. Based on the results of the tests, environment friendly soil stabilizers applied for prevention of scattering or resistance against erosion by rainwater are considered to provide large effects to reduce losses and loss rates showed a tendency of decreasing rapidly when soil stabilizers were mixed.

Estimation of Evapotranspiration in a Forest Watershed in Central Korea (중부(中部) 산림(山林) 지역(地域)의 증발산량(蒸發散量) 추정(推定))

  • Kim, Jesu
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.1
    • /
    • pp.86-92
    • /
    • 1999
  • Evapotranspiration is one of important variables affecting ecosystem processes such as vegetation distribution and growth. It acts as a limiting factor for natural water resource management. The transpiration of vegetation is mainly determined by climatic factors. The lower slope of the study area was densely forested with Pinus densiflora S. et Z. of 8 m height, and the upper slope was covered with poorly grown Pinus densiflora S. et Z. and Quercus trees. The amount of evapotranspiration was estimated to 590.3 mm/yr by annual water budget method. The canopy resistance of Penman-Monteith model was determined as 99 s/m. Seasonal evapotranspiration can be estimated with the calculated evaporation and the canopy resistance. The amount of evapotranspiration peaked in May. That is considered from both the direct evaporation of intercepted rainfall and the transpiration of vegetation during the dry spring season.

  • PDF

Examining Velocity Estimation Equations of Debris Flow Using Small-scaled Flume Experiments (소형 수로실험을 통한 토석류 유동속도 추정식 평가)

  • Eu, Song;Im, Sangjun
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.424-430
    • /
    • 2017
  • With its rapid velocity and wide deposition, debris flow is a natural disaster that causes loss of human life and destruction of facility. To design effective debris barriers, impact force of debris flow should be first considered. Debris flow velocity is one of the key features to estimate the impact force of debris flow. In this study, we conducted small-scale flume experiments to analyze flow characteristics of debris flow, and determine flow resistance coefficients with different slope gradients and sediment mixtures. Flow velocity significantly varied with flume slope and mixture type. Debris flow depth decreased as slope increased, but difference in depth between sediment mixtures was not significant. Among flow resistance coefficients, Chezy coefficient ($C_1$) showed not only relatively highest goodness of fit, but also constant value ($20.19m^{-1/2}\;s^{-1}$) regardless the scale of debris flow events. The overall results suggested that $C_1$ can be most appropriately used to estimate flow velocity, the key factor of assessing impact force, in wide range of debris flow scale.

Comprehensive evaluating the stability of slope reinforced with free and fixed head piles

  • Xixi Xiong;Ying Fan;Jinzhe Wang;Pooya Heydari
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.523-540
    • /
    • 2023
  • The failure of slope can cause remarkable damage to either human life or infrastructures. Stabilizing piles are widely utilized to reinforce slope as a slip-resistance structure. The workability of pile-stabilized slopes is affected by various parameters. In this study, the performance of earth slope reinforced with piles and the behavior of piles under static load, by shear reduction strength method using the finite difference software (FLAC3D) has been investigated. Parametric studies were conducted to investigate the role of pile length (L), different pile distances from each other (S/D), pile head conditions (free and fixed head condition), the effect of sand density (loose, medium, and high-density soil) on the pile behavior, and the performance of pile-stabilized slopes. The performance of the stabilized slopes was analyzed by evaluating the factor of safety, lateral displacement and bending moment of piles, and critical slip mechanism. The results depict that as L increased and S/D reduced, the performance of slopes stabilized with pile gets better by raising the soil density. The greater the amount of bending moment at the shallow depths of the pile in the fixed pile head indicates the effect of the inertial force due to the structure on the pile performance.

The Short-term Safety Factor Considering Passive Resistance Effect of Bar Anchor Based on Smart Construction (스마트 건설기반의 강봉앵커 수동저항 효과를 고려한 단기 안전율)

  • Donghyuk Lee;Duhyun Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • This is an analytical study to confirm the passive resistance effect before post-tensioning of steel bar anchors. When using a steel bar as a permanent anchor, if displacement occurs within the slope even before the head load is applied, the displacement is suppressed by the passive resistance caused by the interaction between the steel bar, grout, and surrounding soil. Accordingly, the shape of the failure surface and changes in the safety factor were examined using limit equilibrium analysis and finite element analysis targeting sites where steel bar anchors were actually applied. It was found that the safety factor of the slope reinforced with steel bar anchors is 2.02 using finite element analysis, which is about 5.9% smaller than 2.14 using limit equilibrium analysis. Also, the location of the failure surface was found to be deeper compared to the unreinforced slope. Likewise, the factor of safety has a 153% and 163% increase using finite element method and limit equilibrium analysis, respectively. In addition, the maximum displacement occurs in the lower unreinforced section within the slope, and the displacement is found to be reduced by 42 to 83% at the location where the steel bar anchors are installed.

Measurement of Soft Ground Foundation and Rock Slope Behavior Using Spiral Bolt Strain Gauge (스파이럴 볼트 변형률계를 이용한 연약지반기초 및 암반사면 거동 계측)

  • Kang, Seong-Seung;Hirata, Atsuo;Jeong, Seong-Hoi;Lee, Woo-Ram;Je, Dong-Kwang;Kim, Dae-Hyeon
    • Tunnel and Underground Space
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • This study is to consider applicability of spiral bolt strain gauge as an instrument measuring behavior of soft ground foundation and rock slope. When the instrument was installed on the ground, it can be useful to identify the state of ground behavior because it has the characteristics of flexibility, as well as to apply the ground reinforcement because it has higher pull-out resistance to the ground. From the measurement of behavior to soft ground foundation, the strain shows a stable state in the beginning, then was observed significant change in the upper and the middle of spiral bolt strain gauge after 400 days. This is analyzed that ground loosening, which is due to occurred frequent earthquake of magnitude 1~2 with increased rainfall, lead to the instability of the ground. From the measurement of behavior to rock slope, the strain shows a stable state with very little change in a period of 0~50 days and the biggest strain at 4.2 m (P6) in a period of 50~100 days, then other places except P6 was maintained at a stable state in a period of 100~160 days. The reason is analyzed because that blasting for excavated limestone surrounding was affected to the largest at P6. However, based on the size of strain change by behavior of the soft ground foundation and rock slope, it is considered that the present condition are not effected on stability of retaining structure and rock slope. In conclusion, the proposed spiral bolt strain gauge can be useful to measure behavior of soft ground foundation and rock slope, and also to be measured behavior as well as reinforcement of the target ground.

A study of the effect of the temperature on the As Te Ge Si amorphous semiconductor (As Te Ge Si 무정형 반도체의 온도영향)

  • 박창엽
    • 전기의세계
    • /
    • v.23 no.6
    • /
    • pp.49-55
    • /
    • 1974
  • Amorphous semiconductor from As 30 Te 48 Ge 10 Si 12 was prepared, and studied electron microscopy, X-ray analysis and resistivity measurement. It's resistivity is 1.56*10$^{6}$ .ohm.-cm when small ampule is used for preparing sample it is found that no phase separation has occurced by electron microscopy, and that phase transition temperature is 232.deg. C by differential Thermal Analysis. The specimen showed threshold switching that the low resistance state occur at critical electric field and the resistance recover at low applied field. Critical electric field of the switching is 10$^{5}$ V/cm at room temperature. Threshold voltage secreace exponentially with increasing ambient temperature and at that each voltage resistance of the switching device increase exponentially. According to the series resistance and applied vottage current slope on the V-I curve is varied. When applied voltage is decreased after switching, the resistance of the switching device is increased. By this result the origin of the switching is the Joule's heating.

  • PDF

The Robust Speed Control on Automatic Train Operation Considering Unknown Running Resistance (열차자동운전에 있어서 미지의 주행저항을 고려한 강인한 속도제어)

  • Byun, Yeun-Sub;Wang, Jong-Bae;Park, Hyun-June
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.114-119
    • /
    • 2001
  • An automatic train operation(ATO) system executes the operation of constant speed travelling and fixed point parking by using microprocessors instead of driver's manual operation. This paper describes the mathematical model for the train considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance, and so on. The speed controller of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control and fixed point parking performance and to compare its performance with that of a PID-type ATO control system under disturbances. Simulation results show that the control performance of gain scheduled control scheme for ATO system is better than that of the conventional PID controller.

  • PDF

The speed regulation and fixed point parking control of urban railway ATO considering unknown running resistance (미지의 주행저항을 고려한 도시철도차량 ATO의 속도추종 및 정밀정차 제어)

  • 변윤섭;한성호;김길동;백광선;한영재
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.280-287
    • /
    • 1999
  • An automatic train operation(ATO) system executes the operation of constant speed travelling and fixed point parking by using microprocessors instead of drivers manual operation. This paper describes the mathematical model for the train considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance, and so on. The speed controller of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control and fixed point parking performance and to compare its performance with that of a PID-type ATO control system under disturbances. Simulation results show that the control performance of gain scheduled control scheme fur ATO system is better than that of the conventional PID controller.

  • PDF