• 제목/요약/키워드: slipping interface

검색결과 11건 처리시간 0.025초

Closed-form Green's functions for transversely isotropic bi-solids with a slipping interface

  • Yue, Zhong Qi
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.469-484
    • /
    • 1996
  • Green's functions are obtained in exact closed-forms for the elastic fields in bi-material elastic solids with slipping interface and differing transversely isotropic properties induced by concentrated point and ring force vectors. For the concentrated point force vector, the Green functions are expressed in terms of elementary harmonic functions. For the concentrated ring force vector, the Green functions are expressed in terms of the complete elliptic integral. Numerical results are presented to illustrate the effect of anisotropic bi-material properties on the transmission of normal contact stress and the discontinuity of lateral displacements at the slipping interface. The closed-form Green's functions are systematically presented in matrix forms which can be easily implemented in numerical schemes such as boundary element methods to solve elastic problems in computational mechanics.

A Large Slipping Finite Element Model for Geosynthetics Interface Modeling

  • Yi, Chang-Tok
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.35-48
    • /
    • 1996
  • 보강토구조물은 흙과 보강재 사이에 큰 변형이 발생하며 보강토구조물의 파괴양상도 보강재의 미끄러짐이나 변형에 의해 지배되며, 때때로 보강재의 재료의 파괴보다는 미끄러짐에 의해 보강토구조물이 파괴되므로 큰변형이 발생하는 흙-보강재의 모델링이 필요하다. 고형 및 액체폐기물 매립장에 쓰이는 라인너 시스템은 매립장의 경사와 쓰레기하중에 의해 큰 변형이 발생하게 된다. 이러한 큰 변형의 문제는 기존의 접촉요소로써 모델링하는데 많은 제약 이 따른다. 본 논문에서는 이러한 흙과 토목섬유보강사이의 큰 만행을 모델링할 수 있는 접촉은소를 제안하였으며, 그 이론과 그 모델의 적용성에 대하여 논하였다.

  • PDF

사용후연료 저장용기 자유입상 모델의 지진응답해석 (Seismic Response Analysis of Freestanding Model of a Spent Fuel Storage Cask)

  • 이재한;서기석;구경회;이홍영;최병일;정성환
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.58-65
    • /
    • 2003
  • The seismic response analysis of a freestanding spent fuel storage cask model are performed for an artificial time history acceleration generated by the basis on the US NRC RG1.60 response acceleration spectrum. This paper focuses on the structural stability by seismic loads to check the overturing possibility of storage cask and the slipping displacement on bed. Parametric analyses of a simplified cask model are performed to take into account the variations in seismic load magnitude and cask/bed interface friction. The analyses results show that the storage cask has a large marginal integrity in the response acceleration and slipping distance for both design seismic and beyond design seismic loads.

  • PDF

3D FE modeling considering shear connectors representation and number in CBGB

  • Abbu, Muthanna A.;Ekmekyapar, Talha A.;Ozakca, Mustafa A.
    • Steel and Composite Structures
    • /
    • 제17권3호
    • /
    • pp.237-252
    • /
    • 2014
  • The use of composite structures is increasingly present in civil building works. Composite Box Girder Bridges (CBGB), particularly, are study of effect of shear connector's numbers and distribution on the behavior of CBGBs is submitted. A Predicti structures consisting of two materials, both connected by metal devices known as shear connectors. The main functions of these connectors are to allow for the joint behavior of the girder-deck, to restrict longitudinal slipping and uplifting at the element's interface and to take shear forces. This paper presents 3D numerical models of CBGBs to simulate their actual structural behavior, with emphasis on the girder-deck interface. Additionally, a Prediction of several FE models is assessed against the results acquired from a field test. A number of factors are considered, and confirmed through experiments, especially full shear connections, which are obviously essential in composite box girder. A good representation for shear connectors by suitable element type is considered. Numerical predictions of vertical displacements at critical sections fit fairly well with those evaluated experimentally. The agreement between the FE models and the experimental models show that the FE model can aid engineers in design practices of box girder bridges. Preliminary results indicate that number of shear studs can be significantly reduced to facilitate adoption of a new arrangement in modeling CBGBs with full composition. However, a further feasibility study to investigate the practical and economic aspects of such a remedy is recommended, and it may represent partial composition in such modeling.

튜브 스웨이징 공정의 유한요소해석 (Finite Element Analysis of Tube Swaging)

  • 김민철;엄재근;임성주;최호준;전만수
    • 소성∙가공
    • /
    • 제21권3호
    • /
    • pp.160-163
    • /
    • 2012
  • In this paper, a new approach to finite element analysis for tube swaging is presented. An analysis model is developed with emphasis on the pusher that imposes back pressure in order to keep the workpiece from slipping along the die-workpiece interface especially when tapered dies are used. A rigid-plastic finite element method is employed. The approach is to simulate the tube swaging process and the results are compared quantitatively with predictions, showing close agreement with each other.

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A.;Dezi, L.;Leoni, G.
    • Steel and Composite Structures
    • /
    • 제2권5호
    • /
    • pp.315-330
    • /
    • 2002
  • This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

사용후 연료 건식저장요기 1/8 규모 축소모형 지진응답시험 (Seismic Response Tests of 1/8 Scale Model for a Spent Fuel Dry Storage Cask)

  • 이재한;구경희;서기석;이흥영;최병일;염성호
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2005년도 학술발표회 논문집
    • /
    • pp.55-61
    • /
    • 2005
  • The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 Elcentro earthquake. This paper focuses on the seismic response test data generation to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. A simplified cask model is used to take into account the variations in seismic load magnitude and cask/bed interface friction. The test results show that the model gives an overturning response for an extreme condition.

  • PDF

발수코팅된 표면에서의 수적의 동적 전락거동 (Dynamic Sliding Behavior of Water Droplets on the Coated Hydrophobic Surfaces)

  • 송정환;중도장
    • 한국재료학회지
    • /
    • 제17권11호
    • /
    • pp.569-573
    • /
    • 2007
  • The static and dynamic hydrophobicities of the water droplets placed on a hydrophobic surface coated using a fluoroalkylsilanes monolayer with different molecular chain lengths were investigated through direct observation of the actual droplet motion during the sliding process. The surface roughness of both was found to be less than 1 nm. The static contact angles of the coated FAS-3 and FAS-17 were respectively $80^{\circ}$ and $108^{\circ}$ at $150^{\circ}C$, 1 h. The slope of sliding acceleration against the water droplet mass exhibited an inflection point, thus suggesting the switching of the dominant sliding mode from slipping to rolling. While their sliding angles were similar in value, notable differences were exhibited in terms of their sliding behavior. This can be understood as being due to the contribution of the shear stress difference at the interface between the solid surface and water during the sliding process. These results show that the sliding acceleration of the water droplets depends strongly on the balance between gravitational and retentive forces on the hydrophobic surface.

Numerical simulation of external pre-stressed steel-concrete composite beams

  • Moscoso, Alvaro M.;Tamayo, Jorge L.P.;Morsch, Inacio B.
    • Computers and Concrete
    • /
    • 제19권2호
    • /
    • pp.191-201
    • /
    • 2017
  • External pre-stressing is often used in strengthening or retrofitting of steel-concrete composite beams. In this way, a proper numerical model should be able to trace the completely nonlinear response of these structures at service and ultimate loads. A three dimensional finite element model based on shell elements for representing the concrete slab and the steel beam are used in this work. Partial interaction at the slab-beam interface can be taken into account by using special beam-column elements as shear connectors. External pre-stressed tendons are modeled by using one-dimensional catenary elements. Contact elements are included in the analysis to represent the slipping at the tendon-deviator locations. Validation of the numerical model is established by simulating seven pre-stressed steel-concrete composite beams with experimental results. The model predictions agree well with the experimental results in terms of collapse loads, path failures and cracking lengths at negative moment regions due to service loads. Finally, the accuracy of some simplified formulas found in the specialized literature to predict cracking lengths at interior supports at service loading and for the evaluation of ultimate bending moments is also examined in this work.

전기저항 측정법을 이용한 탄소섬유/기지 간 계면에서의 섬유 미끌림 정도 측정방법 (Measurement of Electrical Resistance Method in Characterizing the Slip ratio of Carbon fiber/Matrix at the Interface)

  • 권동준;왕작가;구가영;박종만
    • Composites Research
    • /
    • 제25권6호
    • /
    • pp.205-210
    • /
    • 2012
  • 전기저항 측정법을 이용하여 단일 탄소섬유의 인장 실험을 실시하였다. 탄소섬유의 전도성을 이용하여 인장하중에 따른 신율과 전기저항 변화도간의 관계를 연구하였다. 섬유 인장 과정동안에 일정 신율 거리상 응력과 전기저항 변화율간의 상관관계를 통계적으로 정리하였다. 결과에 대해 추세선을 그어 섬유의 변형에 따른 거동 모델을 구성하였다. 프레그먼테이션 시편을 이용하여 인장 실험에 따른 인장 응력이 재료 내부로 전달되면서, 시편 내부 탄소섬유에도 인장 응력이 가해져 기지보다 섬유가 먼저 파괴되었다. 이 경우 탄소섬유의 전기저항 변화도를 측정한 결과 값을 탄소섬유의 거동 모델에 대입하여 프레그먼테이션 시편 내부에 있었던 탄소섬유의 거동을 분석할 수 있었다. 탄소섬유의 인장 신율을 예측하고 프레그먼테이션 시편의 실제 신율을 비교하여 섬유와 기지 사이에 발생된 섬유 미끌림 정도를 확인하였다. 섬유 미끌림 정도의 수치가 클 경우, 기지와 섬유 간 계면 상태가 약한 접합의 상태였다. 이러한 결과를 확인하기 위해서 접착일 평가법을 이용하였으며, 두 실험법의 결과, 동일한 경향임을 확인하였다.