DOI QR코드

DOI QR Code

Failure mechanisms of externally prestressed composite beams with partial shear connection

  • Dall'Asta, A. (PROCAM, University of Camerino, Viale della Rimembranza) ;
  • Dezi, L. (Institute of Structural Engineering, University of Ancona) ;
  • Leoni, G. (Institute of Structural Engineering, University of Ancona)
  • Received : 2002.04.16
  • Accepted : 2002.08.16
  • Published : 2002.10.25

Abstract

This paper proposes a model for analysing the non-linear behaviour of steel concrete composite beams prestressed by external slipping cables, taking into account the deformability of the interface shear connection. By assuming a suitable admissible displacement field for the composite beam, the balance condition is obtained by the virtual work principle. The solution is numerically achieved by approximating the unknown displacement functions as series of shape functions according to the Ritz method. The model is applied to real cases by showing the consequences of different connection levels between the concrete slab and the steel beam. Particular attention is focused on the limited ductility of the shear connection that may be the cause of premature failure of the composite girder.

Keywords

References

  1. Ayyub, M., Sohn, Y.G. and Saadatmanesh, H. (1992a), "Prestressed composite girders. I: Experimental study for negative moment", J. Struct. Engrg. ASCE, 118(10), 2743-2762. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2743)
  2. Ayyub, M., Sohn, Y.G. and Saadatmanesh, H. (1992b), "Prestressed composite girders. II: Analytical study for negative moment", J. Struct. Engrg. ASCE, 118(10), 2763-2783. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:10(2763)
  3. DallAsta, A. and Dezi, L. (1998), "Nonlinear behavior of externally prestressed composite beams: analytical model", J. Struct. Engrg. ASCE, 124(5), 588-597. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:5(588)
  4. Dezi, L., Leoni, G. and Tarantino, A.M. (1995), "Time-dependent analysis of prestressed composite beams", J. Struct. Engrg. ASCE, 121(4), 621-633. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:4(621)
  5. Dunker, K.F., Klaiber, F.W. and Sanders, W.W. Jr. (1986), "Post-tensioning distribution in composite bridges", J. Struct. Engrg. ASCE, 112(11), 2540-2553. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:11(2540)
  6. Dunker, K.F., Klaiber, F.W. and Daoud, F.K (1990), "Strengthening of continuous composite bridges", J. Struct. Engrg. ASCE, 116(9), 2464-2479. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:9(2464)
  7. ENV 1994-2 (1997), "EUROCODE 4: Design of composite steel and concrete structures - Part 2: Bridges" - Third draft: January 1997, European Committee for Standardization.
  8. Hoadley, P.G. (1963) "Behavior of prestressed composite steel beams", J. Struct. Div. ASCE, 89(3), 21-34.
  9. Johnson, R.P. and Molenstra, N. (1991), "Partial shear connection in composite beams in building", Proceedings Institute of Civil Engineers, Part 2, 91, 679-704. https://doi.org/10.1680/iicep.1991.17485
  10. Li, W., Albrecht, P. and Saadatmanesh, H. (1995), "Strengthening of composite steel-concrete bridges", J. Struct. Engrg. ASCE, 121(12), 1842-1849. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:12(1842)
  11. Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), "Tests and analysis of composites beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 9(1), 75-92.
  12. Ollgaard, J.G., Slutter, R.G. and Fisher, J.W. (1971). "Shear strength of stud connectors in lightweight and normal weight concrete", Engineering Journal, AISC, 55-64.
  13. Reagan, S.R. and Krahl, N.W. (1967) "Behavior of prestressed composite beams", J. Struct. Div. ASCE, 93(6), 87-107.
  14. Saadatmanesh, H., Albreicht, P. and Ayyub, B.M. (1989a) "Experimental study of prestressed composite beams", J. Struct. Engrg. ASCE, 115(9), 2348-2363. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2348)
  15. Saadatmanesh, H., Albreicht, P. and Ayyub, B.M. (1989b) "Analytical study of prestressed composite beams", J. Struct. Engrg. ASCE, 115(9), 2364-2381. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2364)
  16. Saadatmanesh, H., Albreicht, P. and Ayyub, B.M. (1989c) "Guidelines for flexural design of prestressed composite beams", J. Struct. Engrg. ASCE, 115(11), 2944-2961. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:11(2944)
  17. Szilard, R. (1959) "Design of prestressed steel structures", J. Struct. Div. ASCE, 85(11), 97-123.
  18. Tong, W. and Saadatmanesh, H. (1992) "Parametric study of continuous prestressed composite girders" J. Struct. Engrg. ASCE, 118(1), 186-205. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:1(186)
  19. Troitsky, M.S., Zielinsky, Z.A. and Rabbani, N.F. (1989) "Prestressed-steel continuous-span girders", J. Struct. Engrg. ASCE, 115(6), 1357-1370. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:6(1357)
  20. Troitsky, M.S. (1990) "Prestressed steel bridges: theory and design", Van Nostrand Reinhold Company, NY.
  21. Virlogeux, M. (1990) "Non-linear analysis of externally prestressed structures", Proc., XI Fedn. Int. de la Preconstrainte (FIP) Symp., FIP, Hamburg, Germany, 163-195.

Cited by

  1. Behavior of composite beams prestressed with external tendons: Experimental study vol.62, pp.12, 2006, https://doi.org/10.1016/j.jcsr.2006.01.007
  2. Closure to “Finite Element Model For Externally Prestressed Composite Beams with Deformable Connection” by Andrea Dall’Asta and Alessandro Zona vol.132, pp.12, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:12(2037)