• 제목/요약/키워드: slider dynamics

검색결과 41건 처리시간 0.02초

Ramp Loading 피코 슬라이더의 거동 해석 (Dynamics of a Pico Slider during the Ramp Loading Process)

  • 임윤철;김범준;조광표
    • Tribology and Lubricants
    • /
    • 제20권6호
    • /
    • pp.322-329
    • /
    • 2004
  • Recently, a load/unload(L/UL) system is adopted to the hard disk drive(HDD) due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk due to no bumped parking zone, and rarer contact between slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface(ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of a pico slider during the loading process are investigated through numerical simulation using FEM analysis and experiment. Ramp profile and angular velocity of the swing arm actuator are very important parameters for the design of L/UL system to avoid collision between slider and disk.

충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석 (Analysis of Dynamics of Slider in Dynamic Loading Process considering Collision)

  • 김범준;임윤철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.968-973
    • /
    • 2003
  • Dynamic L/UL system has many merits, but it can develop an undesirable collision during dynamic loading process. In this paper, the dynamics of negative pressure pico slider during the loading process was investigated by numerical simulation. A simplified L/UL model for the suspension system was presented, and a simulation code was built to analyze the motion of the slider. A slider deigns have been simulated at various disk rotating speeds, skew angles of slider. By selection an optimal RPM and pre-skew angle, we can decrease the amount of collision and smoothen the loading process for a given slider-suspension design.

  • PDF

Ramp Loading 피코 슬라이더의 거동 해석 (An Analysis for the Dynamics of a Pico Slider during the Ramp Loading Process)

  • 김범준;조광표;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2003년도 학술대회지
    • /
    • pp.291-298
    • /
    • 2003
  • Recently, load/unload(L/UL) process is applied to a computer information storage device due to its advantages such as lower power consumption, larger data zone, simpler fabrication of disk for no bumped parking zone, and rarer contact between the slider and media. An analysis of the transient motion for the slider is very important to design an air bearing surface (ABS) of the slider to secure the stable performance of the system. During the L/UL process, however, there are several issues occurred such as contact or collision between slider and media. Sometimes this will cause the system failure. In this study, the dynamics of the slider during the loading process are investigated through a numerical simulation using FEM analysis and experiment.

  • PDF

충돌을 고려한 Dynamic L/UL 슬라이더의 동적 거동 해석 (Analysis of Slider Dynamics in Loading Process considering Collision)

  • 김범준;임윤철
    • 정보저장시스템학회논문집
    • /
    • 제2권2호
    • /
    • pp.144-149
    • /
    • 2006
  • Dynamic L/UL(Load/Unload) system has many merits. but it may happen an undesirable collision during the dynamic loading process. In this paper, the dynamics of negative pressure pico-slider was investigated through numerical simulation during the loading process. A simplified L/UL model for the suspension system has been presented and a simulation code has been developed to analyze the motion of the slider. A slider design has been simulated at various disk rotating speeds, skew angles of slider. We can decrease the possibility of collision and smoothen the loading process for a given slider-suspension design by selection an optimal rpm and pre-skew angle.

  • PDF

트라이볼로지 문제를 고려한 하드 디스크 슬라이더-서스펜션의 동특성 해석 (Tribological Induced Dynamic Characteristics Analysis of HDD Slider-Suspension Assembly)

  • 김청균;차백순
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.64-71
    • /
    • 2001
  • This paper presents dynamic responses of disk flutter and bump in HDD slider. The slider is modeled for three degree-of-freedom systems, which are capable of lifting, pitching, and rolling motions. In numerical analysis, loads from air pressure, preload and static moments from the slider, and stiffness and damping coefficients of the suspension are considered for investigating the dynamic characteristics analysis. The numerical results are presented as functions of typical parameters such as a disk velocity, stiffness and damping coefficients of the suspension, and skew angle.

근 접촉 영역에서 부상중인 슬라이더의 Touch-Down특성의 실험적 해석 (Experimental investigation of TD characteristics of a flying head slider in the near-contact region)

  • 이용은;이상직;임건엽;박경수
    • 정보저장시스템학회논문집
    • /
    • 제7권2호
    • /
    • pp.65-69
    • /
    • 2011
  • Head Disk Interface (HDI) in a Hard Disk Drive (HDD) has decreased to achieve high areal density. Thus, the contact between a slider and a disk becomes more important. The contact between the slider and the disk can cause severe wear and damage of both the slider and the disk. Especially, Touch Down (TD) that the contact occurs continuously and repeatedly is extremely dangerous. Therefore, it is necessary to analyze the unstable bouncing vibration of the slider in head-disk interface. In this paper, we investigate the characteristic and causes of the Touch Down.

NFR 서스펜션의 동특성을 고려한 형상설계에 관한 연구 (A Study on Shape Design of NFR Suspension for Optimal Dynamic Characteristics)

  • 은길수;김노유
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.771-776
    • /
    • 2002
  • Optimal shape of the NFR suspension is studied and developed to improve the dynamic performance and reduce the vibration of the suspension system including a optical head slider. Since accurate position control and stability of the slider motion are highly required in NFR due to the narrower track width and the heavier slider than HDD slider with the low flying height, the dynamic characteristics of the suspension are very important to the mechanical performance of the system. The first natural frequencies in flexural and lateral motion of the suspension are critical factors affecting the dynamics and stability of the flying head, so that the dynamic parameters should be designed properly to avoid an excessive vibration or a crash of the slider on the disk. This paper optimizes the shape of the suspension based on homogenization method in NASTRAN and develops a new suspension shape for NFR system. The suspension is tested on experiment to verify the improvement of the dynamic characteristics.

  • PDF

2차원 미세 포켓이 있는 무한장 Slider Bearing의 CFD 해석 (CFD Analysis of an Infinitely Long Slider Bearing with Two-Dimensional micro-Pockets)

  • 박태조;황윤건;손자덕;정호경
    • Tribology and Lubricants
    • /
    • 제25권1호
    • /
    • pp.43-48
    • /
    • 2009
  • It is reported by many researchers that the textured bearing surfaces, where many tiny micro-pockets or enclosed recesses were incorporated, can enhance the load support and reduce friction force. Recently, the basic lubrication mechanism of micro-pocketed parallel surfaces are explained in terms of "inlet suction" using continuity equation and simply cavitation condition. However, it is required that more actual cavitation condition in the pocket region should be applied to estimate exact bearing performance. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the exact lubrication characteristics of infinitely long slider bearing with micro-pockets. The results show that the pressure distributions are highly affected by pocket depths, its positions and numbers. The numerical method adopted in this paper and results can be use in optimal design of textured sliding bearings.

사각형 딤플로 Surface Texturing한 경사진 Slider 베어링의 윤활해석 (Lubrication Analysis of Surface-Textured Inclined Slider Bearing with Rectangular Dimples)

  • 박태조;장인규
    • Tribology and Lubricants
    • /
    • 제38권5호
    • /
    • pp.191-198
    • /
    • 2022
  • With the world's fast expanding energy usage comes a slew of new issues. Because one-third of energy is lost in overcoming friction, tremendous effort is being directed into minimizing friction. Surface texturing is the latest surface treatment technology that uses grooves and dimples on the friction surface of the machine to significantly reduce friction and improve wear resistance. Despite the fact that many studies on this issue have been conducted, most of them focused on parallel surfaces, with relatively few cases of converging films, as in most sliding bearings. This study investigated the lubrication performance of surface-textured inclined slider bearings. We analyzed the continuity and Navier-Stokes equations using a commercial computational fluid dynamics code, FLUENT. The results show the pressure and velocity distributions and the lubrication performance according to the number and orientation of rectangular dimples. Partial texturing somewhat improves the lubrication performance of inclined slider bearings. The number of dimples with the maximum load-carrying capacity (LCC) and minimum friction is determined. When the major axis of the dimple is arranged in the sliding direction, the LCC and friction reduction are maximized. However, full texturing significantly reduces the LCC of the slider bearing and increases the flow rate. The results have the potential to improve the lubrication performance of various sliding bearings, but further research is required.

근사화 기법을 이용한 Load/Unload 용 헤드 슬라이더 최적설계 (Head Slider Design Using Approximation Method For Load/Unload Applications)

  • 손석호;윤상준;박노철;박영필;최동훈
    • 정보저장시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, we present the optimization of a head slider using kriging method in order to reduce lift-off force during unloading process with satisfying reliable flying attitude in steady state. To perform an optimization process efficiently, a simplified lift-off force model, which is a function of air bearing suction force and flying attitudes, is created by kriging method. The EMDIOS, which is the process integration and design optimization software developed by iDOT, is used to automatically wrap the analysis with the optimization and efficiently implements the repetitive works between analyzer and optimizer. An optimization problem is formulated to reduce the lift-off force during unloading process while satisfying the flying attitude in reliable range over the entire recording band and reducing the probability of contact between slider and disk. The simulation result shows that the amplitude of lift-off force of optimized L/UL slider is reduced about 62%, compared with that of initial slider model. It is demonstrated by the dynamics L/UL simulation that the optimum slider incorporated with the suspension is not only smoothly loaded onto disk but also properly unloaded onto the ramp.

  • PDF