• Title/Summary/Keyword: slag cement mortar

Search Result 260, Processing Time 0.026 seconds

Properties of the Modified Belite Cement with Slag (슬래그를 혼합한 개량형 벨라이트 시멘트의 특성)

  • 안태호;박원기;박동철;심광보;최상홀
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.685-690
    • /
    • 1999
  • Modified belite cement clinker containing $\alpha$'-C2S and C4A3 were syntehsized form the mixture of raw materials. $\alpha$'-C2S was stabilized at room temperature by adding borax. Properties of the clinker were charaterized with a XRD, SEM, TEM The additive effects of slag on the hydration properties were also estimated by measurement of compressive strength fluidity and heat evolution. The experimental results exhibited that the addition of slag to the belite cement improves the fluidity and early compressive strength due to the formation of ettringite and C-S-H. The compressive strengths of the mortar with 20% slag after 7, 90 days hydration were 212, 355 kgf/cm2 respectively.

  • PDF

A Study on the Mix Design Model of 40MPa Class High Strength Mortar with Rice Husk Powder Using Neural Network Theory (신경망 이론을 적용한 40MPa급 증해추출 왕겨분말을 혼입한 고강도 무시멘트 모르타르 배합설계모델에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.156-157
    • /
    • 2022
  • The purpose of this study is to propose a 40MPa mortar mixed design model that applies the neural network theory to minimize wasted effort in trial and error. A mixed design model was applied to each of the 60 data using fly ash, blast furnace slag fine powder and thickened rice husk powder. And in the neural network model, the optimized connection weight was obtained by repeatedly applying it to the MATLAB. The completed mixed design model was demonstrated by analyzing and comparing the predicted values of the mixed design model with those measured in the actual compressive strength test. As a result of the mixed design verification experiment, the error rates of the double mixed non-cement mortar using blast furnace slag fine powder and rice husk powder at a height of 40MPa were 3.24% and 3.4%. Mixed with fly ash and rice husk powder had an error rate of 3.94% and 5.8%. The error rate of the triple mixed non-cement mortar of the rice husk powder, fly ash, and blast furnace slag fine powder was 2.5% and 5.1%.

  • PDF

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

Physical Properties of Non-sintered Cement Mortar with Heat Treatment after Steam Curing (비소성 시멘트 모르타르의 증기양생 후 열처리에 따른 물리적 특성)

  • Na, Hyeong-Won;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 2021
  • This study aims to develop non-sintered cement that can replace the Portland cement by utilizing industrial by-products. As a suggestion, the physical properties of non-sintered cement mortar depending on the curing method were investigated with ground granulated blast furnace slag, class C fly ash, and class F fly ash. As a result of the study, it was found that the strength performance and absorption rate were improved through the heat treatment process after steam curing. It was confirmed through crystal phase analysis that the hydration was accelerated after heat treatment, and the bonding material formed a dense internal structure.

A Study on the Basic Properties of Polymer Cement Mortar Using SBR Latex with Blast-Furnace and Fly Ash (폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to evaluate the improvement of flow, compressive and flexural strengths of polymer cement mortar(PCM) using SBR latex mixed with blast-furnace slag and fly ash. The test specimens were prepared with SBR polymer dispersion, two types of admixture (blast-furnace slag and fly ash), five polymer-cement ratios (P/C; 0, 5, 10, 15 and 20%), and six admixture contents (0, 3, 5, 10, 15 and 20%), plain cement mortar was also made for comparison. From the test results, the flow of PCM was significantly improved compared to ordinary cement mortar, but the flow was slightly reduced when mixed with blast-furnace slag, and the flow was similar to PCM when mixed with fly ash. In addition, the compressive strength of PCM mixed with admixtures was significantly improved, but the flexural strength did not improve except for some mortars. It can be stated that the optimum mix proportions of PCM using SBR with admixture contents 10 to 15% and P/C 10% for the compressive strength improvement, and P/C 20% for flexural strength improvement are recommended respectively in this study.

Deciding the Appropriate Combination Ratio for FA and BS in High-Intensity Cement Mortar (고강도 시멘트 모르타르에서 FA 및 BS의 적정조합비율 결정)

  • Kim, Min-Sang;Moon, Byeong-Yong;Jo, Man-Ki;Park, Sung-Bae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.26-27
    • /
    • 2016
  • This study analyzes the engineering characteristics of mortar according to admixture replacement ratios in cement mortar in a high-intensity ternary system, and changes in FA and BS combination ratios, in order to deduce the optimal combination ratio of FA and BS. Results showed that due to the characteristics of unhardened mortar, flow rate increased with the increase in admixture replacement and FA combination ratios, whereas air quantity decreased and setting time was delayed. Due to the characteristics of light mortar, compression strength decreased at early material ages as the overall combination ratio of FA increased. The FA : BS combination ratio was 2 : 3 on day 28 of material age, proving the best and potentially optimal combination ratio.

  • PDF

Evaluation of Compressive Strength and Drying Shrinkage Properties of Mortar Using Ferronickel Slag Powder (페로니켈 슬래그 미분말 혼입 모르타르의 압축강도 및 건조수축 특성 평가)

  • Kim, Young-Uk;Kim, Do-Bin;Lee, Dong-Joo;Kim, Hye-Jeong;Jeong, Su-Bin;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.93-94
    • /
    • 2018
  • This study investigated the compressive strength and drying shrinkage properties of mortar using ferronickel slag powder by the kinds of industrial by-product to estimate the applicability of ferronickel slag powder for cement replacement materials.

  • PDF

Fundamental Properties of Alkali Activated Slag Mortar with Different Activator Type (자극제의 종류에 따른 알칼리 활성화 슬래그 모르타르의 기초 특성)

  • An, Yang-Jin;Mun, Kyoung-Ju;Soh, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.789-792
    • /
    • 2006
  • The purpose of this study is to investigation the fundamental properties of alkali activated slag of type and concentration of alkali activator. In this paper sodium silicate, sodium carbonate and sodium hydroxide were used as alkaline activator and their concentration were 1, 3, 5 and 7 $Na_2O$ weight percent. The physical properties of alkali activated blast furnace slag cement mortar (AAS) were investigated by flow test and compressive strength. And the hydration properties of AAS characterized by X-ray diffraction and scanning electron microscope. Result show that Alkali activated slag mortar strengths were continuously increased with adding amount and ages. C-S-H were formed to be the main products up to 28days of hydration.

  • PDF

Effect of blast-furnace slag particle fineness changes on the engineering characteristics of mortar (고로슬래그 미분말의 분말도 변화가 모르타르의 공학적 특성에 미치는 영향)

  • Lee, Jae-Jin;Moon, Byeong-Ryong;Park, Yong-Jun;Joo, Eun-Hui;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.102-103
    • /
    • 2016
  • Recently on construction sites, there is increased use of concrete with large quantities of blast-furnace slag(BS) admixture replacements, for purposes of reducing CO2 created from cement, one of the ingredients of concrete. But such high-BS fineness changes can have a huge effect on the quality of mortar and concrete. Therefore in this study an experiment was conducted in which liquidity and intensity of mortar depending on an artificially-applied change in fineness degree at degree 7. The results, though subtle, were that the larger the fineness degree, liquidity increased and air quantity decreased, and compression and flexural strength increased.

  • PDF

An Experimental Study for Improving the Early Strength of Ternary Blended Cement Mortar (삼성분계 혼합시멘트 모르타르의 조기강도 향상을 위한 실험적 연구)

  • Bae, Jun-Young;Jang, Young-Il
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.110-116
    • /
    • 2012
  • Recently, the development and field applications of Ternary Blended Cement(TBC), where blast furnace slag and fly ash are recycled in Ordinary Portland Cement(OPC) in order to obtain improvements in the durability and heat of hydration reduction performance in large scale civil structures, have been increasing. Also, there are continuing efforts by construction companies to reduce the construction time with the aim of reducing construction costs. Therefore, there is a need to improve the performance of TBC, which has a relatively slow early strength development. In order to improve the early strength of TBC mortar, the compressive strength, SO3 content, and SEM analysis was determined in this study on mortar with the fineness and content of blast furnace slag and anhydrite regulated. As a result, to secure the early strength of TBC mortar, using blast furnace slag with a fineness of approximately $4,200cm^2/g$, adding 3.5% anhydrite with a fineness of approximately $10,000cm^2/g$, and managing the $SO_3$ content to roughly 3.72% was found to provide the most outstanding early strength properties.