• Title/Summary/Keyword: slab thickness

검색결과 365건 처리시간 0.025초

주거용 내화단면 중공슬래브의 휨거동 평가 (A Evaluation on Flexural Behavior for Hollow Core Slab of Fire Resistance section for Residence Building)

  • 부윤섭;배규웅;신상민
    • 한국공간구조학회논문집
    • /
    • 제23권2호
    • /
    • pp.61-68
    • /
    • 2023
  • A two-hour fire-resistance PC hollow slab for residential use was developed to secure structural and fire-resistance performance and to be applied to the general building and apartment housing markets. Compared to the existing hollow slab, in order to secure the same or better structural performance and economic feasibility by reducing the quantity, it was attempted to secure the fire resistance performance by reducing the concrete filling rate in the cross section and adjusting the thickness of the upper and lower flanges by optimizing the hollow shape in the cross section of the slab. For structural performance evaluation, experiments were performed on PC hollow slabs by varying the member thickness and the presence or absence of overlaid concrete, and all of the experimental results showed that the design strength was sufficiently exhibited and that stability during construction was possible. The developed synthetic PC hollow slab has secured fire resistance and residential performance so that it can be applied to all buildings, and it is intended to be immediately applied to the field.

냉동연판혼합방법(冷凍練板混合方法)이 치과용(齒科用) 인산(燐酸) 아연(亞鉛) 시멘트의 물리적(物理的) 성질(性質)에 미치는 영향(影響)에 관(關)한 연구(硏究) (AN EXPERIMENTAL STUDY OF FROZEN-SLAB MIXING TECHNIQUE FOR ZINC-PHOSPHATE CEMENT USED IN KOREA)

  • 정호길
    • 대한소아치과학회지
    • /
    • 제8권1호
    • /
    • pp.119-125
    • /
    • 1981
  • The Purpose of this study was to evaluate the effect of frozen slab mixing technique on physical property of zinc phosphate cement used in Korea. Standard consistency, setting time, film thickness, solubility of cement prepared in frozen slab and room temperature slab were tested. The obtained results were as follows. 1. Amount of powder required for standard-consistency for all cements tested could be increased. 2. Setting time for all cements tested could be decreased. 3. No significant difference in film thickness. 4. Solubility for all cements tested could be decreased.

  • PDF

표준실험동에서의 소음.진동 특성 (Noise and Vibration Characteristics of Floor Impact in a Test Building)

  • 정영;유승엽;이평직;정정호;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.92-95
    • /
    • 2005
  • In this study, Heavy-weight floor impact sound and vibration in concrete structures with different slab thickness have been measured in a test building. It was found that natural frequency increased according to increases of slab thickness, and acceleration level decreases. Results also show that the measurements in the 210 and 240mm slab structures are complied with the result from finite element analysis but the In and 180mm slab structures are not because the structures are constrained to the ground. Therefore, in modelling process the condition of sub-structures should be examined in relation to the boundary conditions.

  • PDF

3차원 유한요소 모형를 이용한 줄눈 콘크리트포장 하중전달의 민감도 분석 (Sensitivity Analysis of Load Trunsfer of Jointed Concrete Pavements Using 3-D Finite Element Model)

  • 썬런쥬안;임진선;정진훈
    • 한국도로학회논문집
    • /
    • 제10권2호
    • /
    • pp.145-157
    • /
    • 2008
  • 하중전달효율은 다웰이 설치되었거나 설치되지 않은 콘크리트포장 줄눈의 구조적 성능을 나타내기 위해 사용된다. ABAQUS 소프트웨어를 사용한 줄눈 콘크리트장의 3차원 모형이 본 연구를 통하여 구축되었다. 기층과 노상이 접착되어 구성된 하부층 위에 3개의 슬래브가 놓였으며, 스프링 요소를 사용하여 인접한 슬래브를 줄눈에서 연결하였다. 콘크리트포장의 다양한 줄눈강성을 모사하기 위하여 다양한 값의 스프링 상수를 입력값으로 사용하여 그 관계를 조사하였으며, 스프링 상수가 커질수록 줄눈의 하중전달효율이 증가하는 것으로 나타났다. 슬래브와 기증의 다양한 탄성계수와 두께를 사용하여 슬래브의 거동과 하중전달효율에 미치는 재료물성과 기하학적 형상의 영향을 분석하였다. 그 결과 노상의 탄성계수는 기층의 탄성계수와 슬래브 및 기층의 두께보다 더 큰 영향을 미치는 것으로 나타났다. 또한 양 또는 영의 온도구배에서보다는 음의 온도구배에서 슬래브의 거동과 하중 전단효율이 더 민감 하게 변화하였으며, 낮은 강성의 줄눈은 슬래브의 온도구배에 더 민감한 것으로 나타났다.

  • PDF

2방향 중공슬래브 구조시스템의 비선형 지진거동 평가 (Evaluation of The Nonlinear Seismic Behavior of a Biaxial Hollow Slab)

  • 박용구;김현수;고현;박현재;이동근
    • 한국지진공학회논문집
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2011
  • 최근 들어 슬래브 차음성능에 대한 관심이 커지고 있으며 이에 대응하여 슬래브 두께 증가가 요구되고 있다. 또한 건축물의 효율적인 공간 활용을 위하여 장스팬의 바닥판 시스템이 많이 사용되고 있다. 이러한 요구를 만족하기 위해 개발된 바닥판 시스템중의 하나가 2방향 중공슬래브이다. 2방향 중공슬래브의 구조적 성능을 확인하기 위해서는 지진이 발생하였을 때의 안전성에 대한 검토가 반드시 필요하다. 따라서 본 연구에서는 재료비선형 시간이력해석을 통하여 2방향 중공슬래브의 지진하중에 대한 거동을 평가하였다. 효율적인 시간이력해석을 위하여 기존에 제안된 등가플레이트 모델을 사용하였고, 또한 유효보폭법을 적용한 비선형 모델을 이용하여 2방향 중공슬래브를 적용한 예제구조물의 내진성능을 평가하였다. 이를 통하여 2방향 중공슬래브를 사용한 구조물이 동일한 슬래브 두께의 일반 플랫 플레이트 구조물에 비하여 내진성능이 저하되지 않음을 확인 할 수 있었다.

장선슬래브를 갖는 소형평형 벽식구조 아파트 바닥구조의 중량충격음 특성 (Heavy-weight Impact Sound Characteristics of Floor Structure of a Small-Sized Wall-Slab Apartment Building having Joist Slab)

  • 천영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권1호
    • /
    • pp.8-15
    • /
    • 2020
  • 이 논문에서는 최근 사회적인 이슈로 대두된 바닥충격음 중 특히 중량충격음을 저감시키기 위한 방법의 일환으로, 바닥슬래브의 두께를 증가시키는 기존의 방식과는 달리 평판형 슬래브에 장선을 설치하여 바닥슬래브의 강성을 증가시킴으로써 고유진동수의 이동을 통한 중량충격음의 저감 효과를 기대할 수 있는 장선바닥슬래브를 제안하고, 장선의 춤과 간격에 따른 중량충격음 특성을 해석적으로 분석하였다. 해석결과, 장선슬래브의 슬래브 두께가 증가할수록 음압레벨이 감소하는 경향을 나타내었으나 일정 두께 이상에서는 큰 차이를 보이지 않아 바닥두께 증가로 인한 중량충격음 차단 기대효과에는 임계치가 있을 것으로 판단된다. 또한 장선 춤의 증가와 간격 감소에 따른 바닥강성의 증가는 일관된 중량충격음 차단성능의 증가로 이어지지 않아 최적의 중량충격음 차단성능을 기대하기 위해서는 주택의 유형별로 각기 다른 장선 춤과 간격이 적용되어야 할 것으로 판단되며, 100mm 정도 장선 춤의 증가나 간격 감소로 약 1dB~2dB정도의 중량충격음 감소효과를 얻을 수 있을 것으로 기대된다.

Investigation on structural behaviour of composite cold-formed steel and reinforced concrete flooring systems

  • Omar A., Shamayleh;Harry, Far
    • Steel and Composite Structures
    • /
    • 제45권6호
    • /
    • pp.895-905
    • /
    • 2022
  • Composite flooring systems consisting of cold-formed steel joists and reinforced concrete slabs offer an efficient, lightweight solution. However, utilisation of composite action to achieve enhanced strength and economical design has been limited. In this study, finite element modelling was utilised to create a three-dimensional model which was then validated against experimental results for a composite flooring system consisting of cold-formed steel joists, reinforced concrete slab and steel bolt shear connectors. This validated numerical model was then utilised to perform parametric studies on the performance of the structural system. The results from the parametric study demonstrate that increased thickness of the concrete slab and increased thickness of the cold formed steel beam resulted in higher moment capacity and stiffness of the composite flooring system. In addition, reducing the spacing of bolts and spacing of the cold formed steel beams both resulted in enhanced load capacity of the composite system. Increasing the concrete grade was also found to increase the moment capacity of the composite flooring system. Overall, the results show that an efficient, lightweight composite flooring system can be achieved and optimised by selecting suitable concrete slab thickness, cold formed beam thickness, bolt spacing, cold formed beam spacing and concrete grade.

Effect of one way reinforced concrete slab characteristics on structural response under blast loading

  • Kee, Jung Hun;Park, Jong Yil;Seong, Joo Hyun
    • Advances in concrete construction
    • /
    • 제8권4호
    • /
    • pp.277-283
    • /
    • 2019
  • In evaluating explosion-protection capacity, safety distance is broadly accepted as the distance at which detonation of a given explosive causes acceptable structural damage. Safety distance can be calculated based on structural response under blast loading and damage criteria. For the applicability of the safety distance, the minimum required stand-off distance should be given when the explosive size is assumed. However, because of the nature of structures, structural details and material characteristics differ, which requires sensitivity analysis of the safety distance. This study examines the safety-distance sensitivity from structural and material property variations. For the safety-distance calculation, a blast analysis module based on the Kingery and Bulmash formula, a structural response module based on a Single Degree of Freedom model, and damage criteria based on a support rotation angle were prepared. Sensitivity analysis was conducted for the Reinforced Concrete one-way slab with different thicknesses, reinforcement ratios, reinforcement yield strengths, and concrete compressive strengths. It was shown that slab thickness has the most significant influence on both inertial force and flexure resistance, but the compressive strength of the concrete is not relevant.

Cyclic behaviour of concrete encased steel (CES) column-steel beam joints with concrete slabs

  • Chu, Liusheng;Li, Danda;Ma, Xing;Zhao, Jun
    • Steel and Composite Structures
    • /
    • 제29권6호
    • /
    • pp.735-748
    • /
    • 2018
  • In this paper, the cyclic behavior of steel beam-concrete encased steel (CES) column joints was investigated experimentally and numerically. Three frame middle joint samples with varying concrete slab widths were constructed. Anti-symmetrical low-frequency cyclic load was applied at two beam ends to simulate the earthquake action. The failure modes, hysteretic behavior, ultimate load, stiffness degradation, load carrying capacity degradation, displacement ductility and strain response were investigated in details. The three composite joints exhibited excellent seismic performance in experimental tests, showing high load-carrying capacity, good ductility and superior energy dissipation ability. All three joint samples reached their ultimate loads due to shear failure. Numerical results from ABAQUS modelling agreed well with the test results. Finally, the effect of the concrete slab on ultimate load was analyzed through a parametric study on concrete strength, slab thickness, as well as slab width. Numerical simulation showed that slab width and thickness played an important role in the load-carrying capacity of such joints. As a comparison, the influence of concrete grade was not significant.

Numerical analysis of simply supported two-way reinforced concrete slabs under fire

  • Wenjun Wang;Binhui Jiang;Fa-xing Ding;Zhiwu Yu
    • Computers and Concrete
    • /
    • 제31권6호
    • /
    • pp.469-484
    • /
    • 2023
  • The response mechanism of simply supported two-way reinforced concrete (RC) slabs under fire was numerically studied from the view of stress redistribution using the finite element software ABAQUS. Results show that: (1) Simply supported two-way RC slabs undergo intense stress redistribution, and their responses show four stages, namely elastic, elastic-plastic, plastic and tensile membrane stages. There is no cracking in the fire area of the slabs until the tensile membrane stage. (2) The inverted arch effect and tensile membrane effect improve the fire resistance of the two-way slabs. When the deflection is L/20, the slab is in an inverted arch effect state, and the slab still has a good deflection reserve. The deformation rate of the slab in the tensile membrane stage is smaller than that in the elastic-plastic and plastic stages. (3) Fire resistance of square slabs is better than that of rectangular slabs. Besides, increasing the reinforcement ratio or slab thickness improves the fire resistance of the slabs. However, an increase of cover thickness has little effect on the fire resistance of two-way slabs. (4) Compared with one-way slabs, the time for two-way slabs to enter the plastic and tensile cracking stage is postponed, and the deformation rate in the plastic and tensile cracking stage is also slowed down. (5) The simply supported two-way RC slabs can satisfy with the requirements of a class I fire resistance rating of 90 min without additional fire protection.