• 제목/요약/키워드: size series

검색결과 1,527건 처리시간 0.03초

Morphological and Molecular Identification of Stellantchasmus dermogenysi n. sp. (Digenea: Heterophyidae) in Thailand

  • Wongsawad, Chalobol;Nantarat, Nattawadee;Wongsawad, Pheravut;Butboonchoo, Preeyaporn;Chai, Jong-Yil
    • Parasites, Hosts and Diseases
    • /
    • 제57권3호
    • /
    • pp.257-264
    • /
    • 2019
  • We tried a series of morphological and molecular approaches to identify a new species of Stellantchasmus (Digenea: Heterophyidae) originating from the wrestling half-beaked fish, Dermogenys pusillus of Thailand. Adult worm samples of the new species were recovered from hamsters experimentally infected with the metacercariae from D. pusillus in Thailand. Two isolates (Thai and Korean) of Stellantchasmus falcatus were used as comparative control groups. Worm samples of 3 Stellantchasmus groups were morphologically observed and molecularly analyzed with the mitochondrial cytochrome c oxidase 1 gene. The morphological characteristics of S. dermogenysi n. sp. are similar to S. falcatus originating from brackish water fish, but minor difference was noted including the absence of the prepharynx, position of the ovary near the ceca end, smaller body size, and shorter esophageal length. A phylogenetic tree derived from neighbor-joining and maximum-likelihood methods suggests that S. dermogenysi n. sp. is separated from S. falcatus supported by high bootstrap values. The relative divergences persist between these host-specific trematodes, which we suggest should be recognized as 2 distinct species. Comparisons of S. dermogenysi n. sp. with S. falcatus isolated from mullets in Thailand and Korea indicate a genetic divergence of mitochondrial DNA of 19.4% and 21.7%, respectively. By the present study, a new species, Stellantchasmus dermogenysi n. sp. (Digenea: Heterophyidae), is proposed in Thailand based on molecular evidences, in addition to minor morphological differences between S. falcatus and the new species.

Integrated cable vibration control system using Arduino

  • Jeong, Seunghoo;Lee, Junhwa;Cho, Soojin;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • 제23권6호
    • /
    • pp.695-702
    • /
    • 2019
  • The number of cable-stayed bridges has been increasing worldwide, causing issues in maintaining the structural safety and integrity of bridges. The stay cable, one of the most critical members in cable-stayed bridges, is vulnerable to wind-induced vibrations owing to its inherent low damping capacity. Thus, vibration mitigation of stay cables has been an important issue both in academia and practice. While a semi-active control scheme shows effective vibration reduction compared to a passive control scheme, real-world applications are quite limited because it requires complicated equipment, including for data acquisition, and power supply. This study aims to develop an Arduino-based integrated cable vibration control system implementing a semi-active control algorithm. The integrated control system is built on the low-cost, low-power Arduino platform, embedding a semi-active control algorithm. A MEMS accelerometer is installed in the platform to conduct a state feedback for the semi-active control. The Linear Quadratic Gaussian control is applied to estimate a cable state and obtain a control gain, and the clipped optimal algorithm is implemented to control the damping device. This study selects the magnetorheological damper as a semi-active damping device, controlled by the proposed control system. The developed integrated system is applied to a laboratory size cable with a series of experimental studies for identifying the effect of the system on cable vibration reduction. The semi-active control embedded in the integrated system is compared with free and passive mode cases and is shown to reduce the vibration of stay-cables effectively.

15 MW급 초전도 풍력 발전기의 설계 및 전자기 해석 (Design and Electromagnetic Analysis of a 15 MW Class Superconducting Wind Power Generator)

  • 정가은;성해진;박민원;유인근
    • 한국산업정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.39-44
    • /
    • 2019
  • 고온 초전도 (HTS) 발전기는 무게, 크기 및 효율의 장점 때문에 활발히 연구되어왔다. 대규모의 초전도 풍력 발전기는 매우 저속의 고토크 회전 기계이다. 이 기계에서는 높은 전자기력과 토크가 중요한 문제이다. 하나의 축에 직렬로 연결된 2개의 발전기는 고토크의 문제를 극복하기위한 하나의 해결 방안이 될 수 있다. 본 논문에서 저자는 15 MW 급 HTS 발전기를 설계하고 분석했다. 3D 유한 요소법을 사용하여 15 MW HTS 발전기의 자기장 분포 및 토크 성능을 확인하였다. 결과적으로 설계된 발전기는 기존의 발전기보다 적은 토크를 생성한다. 제시된 15 MW 초전도 발전기의 설계방식은 대용량 초전도 풍력 발전기의 제작에 있어 고토크로 인한 문제를 해결하는데 활용될 수 있다.

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

Engineered bioclogging in coarse sands by using fermentation-based bacterial biopolymer formation

  • Kim, Yong-Min;Park, Taehyung;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • 제17권5호
    • /
    • pp.485-496
    • /
    • 2019
  • Sealing of leakage in waterfront or water-retaining structures is one of the major issues in geotechnical engineering practices. With demands for biological methods as sustainable ground improvement techniques, bioclogging, defined as the reduction in hydraulic conductivity of soils caused by microbial activities, has been considered as an alternative to the chemical grout techniques for its economic advantages and eco-friendliness of microbial by-products. This study investigated the feasibility of bioaugmentation and biostimulation methods to induce fermentation-based bioclogging effect in coarse sands. In the bioaugmentation experiments, effects of various parameters and conditions, including grain size, pH, and biogenic gas generation, on hydraulic conductivity reduction were examined through a series of column experiments while Leuconostoc mesenteroides, which produce an insoluble biopolymer called dextran, was used as the model bacteria. The column test results demonstrate that the accumulation of bacterial biopolymer can readily reduce the hydraulic conductivity by three-to-four orders of magnitudes or by 99.9-99.99% in well-controlled environments. In the biostimulation experiments, two inoculums of indigenous soil bacteria sampled from waterfront embankments were prepared and their bioclogging efficiency was examined. With one inoculum containing species capable of fermentation and biopolymer production, the hydraulic conductivity reduction by two orders of magnitude was achieved, however, no clogging was found with the other inoculum. This implies that presence of indigenous species capable of biopolymer production and their population, if any, play a key role in causing bioclogging, because of competition with other indigenous bacteria. The presented results provide fundamental insights into the bacterial biopolymer formation mechanism, its effect on soil permeability, and potential of engineering bacterial clogging in subsurface.

Public Reporting of Hospital Level Surgical Volumes: Its Influence on Patient Behavior

  • Han, Kyu-Tae;Park, Eun-Cheol;Nam, Chung-Mo;Kim, Tae-Hyun;Hahm, Myung-Il;Lee, Sang-Gyu
    • 한국의료질향상학회지
    • /
    • 제24권2호
    • /
    • pp.62-75
    • /
    • 2018
  • Purpose: The objective of this study was to publicly report the hospital-level surgical volume for 7 types of surgery including gastrectomy. Also, to investigate the changes in patient behaviors after the public reporting among patients with gastrectomy. Methods: This study used data from the National Health Insurance Service Cohort. The data comprised of 2,214 patients who were diagnosed with gastric cancer and underwent gastrectomy during 2004-2012. An interrupted time series analysis was performed to investigate the association between patients' choice and public reporting. Results: 79.27% of the patients visited a hospital with high surgical volume. The time trend after introduction of public reporting was positively associated with visiting a high volume hospital (per 1 month, RR: 1.004, p=0.0329). However, after adjusting the health policies by reducing copayment, public reporting on surgical volume was not associated with visiting a high volume hospital. Sub-group analyses had also similar results. Conclusion: Patients were more affected by policies on economic support than on public reporting, and the changes in treatment options may have been affected by the increasing preference for large size hospitals. Thus, public reporting did not significantly improve the options available for patients and their decision making on health care utilization.

당뇨발 절단 치료에서 Fillet Flap의 사용 (Fillet Flap Coverage for Closure of Diabetic Foot Amputation)

  • 이정우;유환;박재용
    • 대한족부족관절학회지
    • /
    • 제24권4호
    • /
    • pp.148-155
    • /
    • 2020
  • Purpose: Minor foot amputations are performed for recurrent or infected ulcers or osteomyelitis of the diabetic feet. Patients may require a large amount of bone resection for wound closure. On the other hand, this results in more foot dysfunction and a longer time to heal. The authors describe fillet flap coverage to avoid more massive resection in selected cases. This study shows the results of fillet flap coverage for the closure of diabetic foot minor amputation. Materials and Methods: This was a retrospective case series of patients who underwent forefoot and midfoot amputation and fillet flap for osteomyelitis or nonhealing ulcers between March 2013 to November 2017. In addition, the patient comorbidities, hospital days, complications, and duration to complete healing were evaluated. Results: Fourteen fillet flap procedures were performed on 12 patients. Of those, two had toe necrosis, nine had forefoot necrosis, and three had midfoot necrosis. Eleven forefoot amputations and three midfoot amputations were performed. Among forefoot necrosis after a fillet flap, three patients had revision surgery for partial necrosis of the flap, and two patients had an additional amputation. Two patients had additional amputations among those with midfoot necrosis. By the fillet flap, the amputation size was reduced as much as possible. The mean initial healing days, complete healing days, and hospital stay was 70.6 days, 129.0 days, and 60.0 days, respectively. Conclusion: The fillet flap facilitates restoration of the normal foot contour and allows salvage of the metatarsal or toe.

LNG 화물창 2차 방벽의 기계적 성능에 아라미드 섬유가 미치는 영향에 대한 연구 (Effects of Aramid Fiber on the Mechanical Properties of Secondary Barrier for LNG Cargo Containment System)

  • 방승길;염동주;정연제;김희태;김정대;이제명
    • 대한조선학회논문집
    • /
    • 제58권4호
    • /
    • pp.206-213
    • /
    • 2021
  • Recently, although the size of the LNG Cargo Containment System (CCS) has been increasing, the secondary barrier is reported to remain unchanged, and the conventional Flexible Secondary Barrier (FSB) used in Mark-III type has been pointed out to be vulnerable to failure owing to thermal and cyclic loads. In this respect, a tensile test was carried out to verify the reinforcing effect of FSB using aramid fiber on weft compared to the conventional FSB. In order to consider the LNG leakage situation, a series of tensile tests were conducted from ambient to cryogenic temperature, and mechanical properties were evaluated for each fiber direction on account of anisotropy. Tensile behavior and fracture analyses were performed to confirm the mechanical properties of each material according to temperature. Tensile test results proved that replacing the aramid fiber instead of E-glass fiber used on weft is effective in enhancing the mechanical properties.

Size-dependent flexoelectricity-based vibration characteristics of honeycomb sandwich plates with various boundary conditions

  • Soleimani-Javid, Zeinab;Arshid, Ehsan;Khorasani, Mohammad;Amir, Saeed;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • 제10권5호
    • /
    • pp.449-460
    • /
    • 2021
  • Flexoelectricity is an interesting materials' property that is more touchable in small scales. This property beside the sandwich structures placed in the center of scientists' attention due to their extraordinary effects on the mechanical properties. Furthermore, in the passage of decades, more elaborated sandwich structures took into consideration results from using honeycomb core. This kind of structure, inspiring from honeycomb core, provides more stiffness to weight ratio, which plays a crucial role in different industries. In this paper, based on the Love-Kirchhoff's hypothesis, Hamilton's principle, modified couple stress theory and Fourier series analytical method, equations of motion for a sandwich plate containing a honeycomb core integrated by two face-sheets have derived and solved analytically. The equations of both face sheets have derived by flexoelectricity consideration. Moreover, it should be noticed that the whole structure rests on the visco-Pasternak foundation. Conducting current research provided an acceptable and throughout study based on flexoelectricity to address the effect of materials' characteristics, length-scale parameter, aspect, and thickness ratios and boundary conditions on the natural frequency of honeycomb sandwich plates. Also, based on the presented figures and tables, there is a close agreement between previous studies and recent work. Due to the high ratio of strength to weight, current model analyzing is capable of taking into account for different vehicles' manufacturing in a high range of industries.