Acknowledgement
Grant : Development of liquefaction damage prediction visualization system and liquefaction reinforcement method with high efficiency and low cost
Supported by : National Research Foundation of Korea (NRF)
References
- Abbasi, B., Ta, H.X., Muhunthan, B., Ramezanian, S., Abu-Lail, N. and Kwon, T.H. (2018), "Modeling of permeability reduction in bioclogged porous sediments", J. Geotech. Geoenviron. Eng., 144(4), 04018016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001869
- Abdel Aal, G.Z., Atekwana, E.A. and Atekwana, E.A. (2010), "Effect of bioclogging in porous media on complex conductivity signatures", J. Geophys. Res. Biogeosci., 115(G3).
- Achal, V. and Kawasaki, S. (2016), "Biogrout: A novel binding material for soil improvement and concrete repair", Front. Microbiol., 7, 314.
- Blauw, M., Lambert, J. and Latil, M.N. (2009), "Biosealing: A method for in situ sealing of leakages", Proceedings of the 9th International Symposium on Ground Improvement Technologies and Case Histories, Singapore, December.
- Chang, I. and Cho, G.C. (2014), "Geotechnical behavior of a beta-1, 3/1, 6-glucan biopolymer-treated residual soil", Geomech. Eng., 7(6), 633-647. https://doi.org/10.12989/gae.2014.7.6.633
- Chang, I., Im, J. and Cho, G.C. (2016), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can. Geotech. J., 53(10), 1658-1670. https://doi.org/10.1139/cgj-2015-0475
- Cunningham, A.B., Characklis, W.G., Abedeen, F. and Crawford, D. (1991), "Influence of biofilm accumulation on porous media hydrodynamics", Environ. Sci. Technol., 25(7), 1305-1311. https://doi.org/10.1021/es00019a013
- DeJong, J., Soga, K., Kavazanjian, E., Burns, S., Van Paassen, L., Al Qabany, A., Aydilek, A., Bang, S., Burbank, M. and Caslake, L.F. (2013), "Biogeochemical processes and geotechnical applications: progress, opportunities and challenges", Geotechnique, 63(4), 287. https://doi.org/10.1680/geot.SIP13.P.017
- DeJong, J.T., Mortensen, B.M., Martinez, B.C. and Nelson, D.C. (2010), "Bio-mediated soil improvement", Ecol. Eng., 36(2), 197-210. https://doi.org/10.1016/j.ecoleng.2008.12.029
- Eklund, D. and Stille, H. (2008), "Penetrability due to filtration tendency of cement-based grouts", Tunn. Undergr. Sp. Technol., 23(4), 389-398. https://doi.org/10.1016/j.tust.2007.06.011
- Farah, T., Souli, H., Fleureau, J.M., Kermouche, G., Fry, J.J., Girard, B., Aelbrecht, D., Lambert, J. and Harkes, M. (2016), "Durability of bioclogging treatment of soils", J. Geotech. Geoenviron. Eng., 142(9), 04016040. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001503
- Foster, M., Fell, R. and Spannagle, M. (2000), "A method for assessing the relative likelihood of failure of embankment dams by piping", Can. Geotech. J., 37(5), 1025-1061. https://doi.org/10.1139/t00-029
- Ham, S.M., Chang, I.H., Noh, D.H., Kwon, T.H. and Muhunthan, B. (2018), "Improvement of surface erosion resistance of sand by microbial biopolymer formation", J. Geotech. Geoenviron. Eng., 144(7), 06018004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001900
- Hand, V.L., Lloyd, J.R., Vaughan, D.J., Wilkins, M.J. and Boult, S. (2008), "Experimental studies of the influence of grain size, oxygen availability and organic carbon availability on bioclogging in porous media", Environ. Sci. Technol., 42(5), 1485-1491. https://doi.org/10.1021/es072022s
- Harshey, R.M. (2003), "Bacterial motility on a surface: Many ways to a common goal", Annu. Rev. Microbiol., 57(1), 249-273. https://doi.org/10.1146/annurev.micro.57.030502.091014
- Ivanov, V. and Chu, J. (2008), "Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ", Rev. Environ. Sci. Bio., 7(2), 139-153. https://doi.org/10.1007/s11157-007-9126-3
- Jeon, M.K., Kwon, T.H., Park, J.S. and Shin, J.H. (2017), "In situ viscoelastic properties of insoluble and porous polysaccharide biopolymer dextran produced by Leuconostoc mesenteroides using particle-tracking microrheology", Geomech. Eng., 12(5), 849-862. https://doi.org/10.12989/gae.2017.12.5.849
- Kim, D.D., O'Farrell, C., Toth, C.R., Montoya, O., Gieg, L.M., Kwon, T.H. and Yoon, S. (2018), "Microbial community analyses of produced waters from high-temperature oil reservoirs reveal unexpected similarity between geographically distant oil reservoirs", Microb. Biotechnol., 11(4), 788-796. https://doi.org/10.1111/1751-7915.13281
- Kwon, T.H. and Ajo-Franklin, J.B. (2013), "High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media", Geophysics, 78(6), EN117-EN127. https://doi.org/10.1190/geo2012-0392.1
-
Kwon, Y.M., Im, J., Chang, I. and Cho, G.C. (2017), "
$\varepsilon$ -polylysine biopolymer for coagulation of clay suspensions", Geomech. Eng., 12(5), 753-770. https://doi.org/10.12989/gae.2017.12.5.753 - Lappan, R. and Fogler, H.S. (1992), "Effect of bacterial polysaccharide production on formation damage", SPE. Prod. Eng., 7(2), 167-171. https://doi.org/10.2118/19418-PA
- Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of xanthan gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847. https://doi.org/10.12989/gae.2017.12.5.831
- Naessens, M., Cerdobbel, A., Soetaert, W. and Vandamme, E.J. (2005), "Leuconostoc dextransucrase and dextran: Production, properties and applications", J. Chem. Technol. Biotechnol., 80(8), 845-860. https://doi.org/10.1002/jctb.1322
- Noh, D.H., Ajo-Franklin, J.B., Kwon, T.H. and Muhunthan, B. (2016), "P and S wave responses of bacterial biopolymer formation in unconsolidated porous media", J. Geophys. Res. Biogeosci., 121(4), 1158-1177.
- Or, D., Smets, B.F., Wraith, J., Dechesne, A. and Friedman, S. (2007), "Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review", Adv. Water Resour., 30(6-7), 1505-1527. https://doi.org/10.1016/j.advwatres.2006.05.025
- Otts, D.R. and Day, D. (1987), "The effect of ionophores on the production of extracellular dextransucrase by Leuconostoc mesenteroides", FEMS Microbiol. Lett., 42(2-3), 179-183. https://doi.org/10.1111/j.1574-6968.1987.tb02068.x
- Ouyang, S. and Daemen, J. (1996), Performance of Bentonite and Bentonite/Crushed Rock Borehole Seals, Springer
- Qureshi, M.U., Chang, I. and Al-Sadarani, K. (2017), "Strength and durability characteristics of biopolymer-treated desert sand", Geomech. Eng., 12(5), 785-801. https://doi.org/10.12989/gae.2017.12.5.785
- Silverman, M.P. and Munoz, E.F. (1974), "Microbial metabolism and dynamic changes in the electrical conductivity of soil solutions: A method for detecting extraterrestrial life", Appl. Microbiol., 28(6), 960-967. https://doi.org/10.1128/AEM.28.6.960-967.1974
- Stewart, T.L. and Fogler, H.S. (2001), "Biomass plug development and propagation in porous media", Biotechnol. Bioeng., 72(3), 353-363. https://doi.org/10.1002/1097-0290(20010205)72:3<353::AID-BIT13>3.0.CO;2-U
- Ta, H.X., Muhunthan, B., Ramezanian, S., Abu-Lail, N. and Kwon, T.H. (2017), "Effects of bacterial dextran on soil geophysical properties", Environ. Geotech., 5(2), 114-122. https://doi.org/10.1680/jenge.15.00059
- Taylor, S.W. and Jaffe, P.R. (1990), "Biofilm growth and the related changes in the physical properties of a porous medium: 1. Experimental investigation", Water Resour. Res., 26(9), 2153-2159. https://doi.org/10.1029/WR026i009p02153
- van Paassen, L.A., Ghose, R., van der Linden, T.J., van der Star, W.R. and van Loosdrecht, M.C. (2010), "Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment", J. Geotech. Geoenviron. Eng., 136(12), 1721-1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382
- Wolf, B.F. and Fogler, H.S. (2001), "Alteration of the growth rate and lag time of Leuconostoc mesenteroides NRRL-B523", Biotechnol. Bioeng., 72(6), 603-610. https://doi.org/10.1002/1097-0290(20010320)72:6<603::AID-BIT1025>3.0.CO;2-4
Cited by
- Modification of Interfacial Tension and Wettability in Oil-Brine-Quartz System by in Situ Bacterial Biosurfactant Production at Reservoir Conditions: Implications for Microbial Enhanced Oil Recovery vol.33, pp.6, 2019, https://doi.org/10.1021/acs.energyfuels.9b00545
- Evaluation of Injection capabilities of a biopolymer-based grout material vol.25, pp.1, 2019, https://doi.org/10.12989/gae.2021.25.1.031
- Surface erosion behavior of biopolymer-treated river sand vol.25, pp.1, 2019, https://doi.org/10.12989/gae.2021.25.1.049
- Dynamic Properties of Biopolymer-Treated Loose Silty Sand Evaluated by Cyclic Triaxial Test vol.50, pp.1, 2019, https://doi.org/10.1520/jte20210141
- Enzyme induced carbonate precipitation for soil internal erosion control under water seepage vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.289
- Seismic earth pressure on embankment gravity retaining wall with nonuniform slope vol.26, pp.5, 2021, https://doi.org/10.12989/gae.2021.26.5.415
- Relaxation behavior in low-frequency complex conductivity of sands caused by bacterial growth and biofilm formation by Shewanella oneidensis under a high-salinity condition vol.86, pp.6, 2019, https://doi.org/10.1190/geo2020-0213.1