• Title/Summary/Keyword: size reduction

Search Result 3,644, Processing Time 0.034 seconds

Experimental study on the drag reduction of a helmet for paragliding (패러글라이딩 헬멧의 항력 감소에 관한 실험적 연구)

  • Hwang, Jongbin;Park, Jungmok;Song, Jinseok;Kim, Jooha
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.46-53
    • /
    • 2021
  • In the present study, wind tunnel experiments were performed to reduce the drag of a paragliding helmet in the range of Reynolds numbers from 46,000 to 155,000. The drag force of the helmet model with dimples and deflectors installed was measured by varying the dimple depth and the slant angle of the deflector. The dimples were effective in reducing the drag at low Reynolds numbers, but no significant drag reduction was found in the Reynolds number range in which an actual paraglider flight takes place. On the other hand, the deflector installed tangentially to the side outline of the helmet showed an average drag reduction of 7% in the flight Reynolds number range of real paragliding. This was because the deflector shrunk the size of the wake region and moved the wake region downstream of the deflector.

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • David Horvath;James King;Robert Hoover;Steve Warmann;Ken Marsden;Dalsung Yoon;Steven Herrmann
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.383-398
    • /
    • 2022
  • The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.

A Study on the Cause and Reduction of Cracks in the Wall Connecting the Underground Parking Lot and the Apartment (지하주차장과 아파트 연결 벽체의 균열 원인 분석 및 저감방안 연구)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.161-162
    • /
    • 2020
  • Cracks are caused by drying shrinkage between the upper part of the underground parking lot and the apartment wall. As a result of the investigation, the distance between the apartment and the apartment is more than 45m, and the top slab of the underground parking lot is usually flat when there is not with steps. Therefore, the crack occurs more when the underground parking lot is a PC slab than a RC slab. In this study, the reduction of cracks was conducted by extending the slab, expanding the beam size, increasing the wall thickness, and installing a delay joint on slab. In each case, a finite element analysis was performed to examine the crack reduction method.

  • PDF

The development of a fuel lifecycle reactivity control strategy for a generic micro high temperature reactor

  • Seddon Atkinson;Takeshi Aoki
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.785-792
    • /
    • 2024
  • This article provides an overview of the design methodology used to develop a conceptual set of reactivity control mechanism of a micro reactor based on the U-Battery. The U-Battery is based on remote deployment and therefore it is favourable to provide a long fuel lifecycle. This is achieved by implementing a high fissile loading content, which proves challenging when considering reactivity control methods. This article follows the design methodology used to overcome these issues, with an emphasis on a new concept of a moveable moderator which utilises the size of the U-Battery as a small reduction in moderation provides a significant reduction in reactivity. The latest work on this project sees the moveable moderator investigated during a depressurised loss of forced coolant accident, where a reduction of moderator volume increases the maximum fuel temperature experienced. The overall conclusion is that the maximum fuel temperature is not significantly increased (4 K) due to the central reflector region relatively lower volumetric heat capacity compared to that of whole core. However, a small temperature increase is observed immediately after the transient due to the central reflector removal because it reaches energy equilibrium with the fuel region faster.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

Investigation of the model scale and particle size effects on the point load index and tensile strength of concrete using particle flow code

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.4
    • /
    • pp.445-452
    • /
    • 2018
  • In this paper the effects of particle size and model scale of concrete have been investigated on point load index, tensile strength, and the failure processes using a PFC2D numerical modeling study. Circular and semi-circular specimens of concrete were numerically modeled using the same particle size, 0.27 mm, but with different model diameters of 75 mm, 54 mm, 25 mm, and 12.5 mm. In addition, circular and semi-circular models with the diameter of 27 mm and particle sizes of 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, and 1.27 mm were simulated to determine whether they can match the experimental observations from point load and Brazilian tests. The numerical modeling results show that the failure patterns are influenced by the model scale and particle size, as expected. Both Is(50) and Brazilian tensile strength values increased as the model diameter and particle sizes increased. The ratio of Brazilian tensile strength to Is(50) showed a reduction as the particle size increased but did not change with the increase in the model scale.

The use of river sand for fine aggregate in UHPC and the effect of its particle size

  • Kang, Su-Tae
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.431-441
    • /
    • 2020
  • For the purpose of improving the properties of UHPC as well as the economic efficiency in production of the material, Availability of river sands as fine aggregate instead of micro silica sand were investigated. Four different sizes of river sands were considered. Using river sand instead of micro silica sand increased the flowability, and decreased the yield stress and plastic viscosity in rheological properties, and the effect was higher with larger particle size of river sand. It was demonstrated by analyses based on the packing density. In the results of compressive strength and elastic modulus, even though river sand was not as good as micro silica sand, it could provide high strength of over 170 MPa and elastic modulus greater than 40 GPa. The difference in compressive strength depending on the size of river sand was explained with the concept of maximum paste thickness based on the packing density of aggregate. The flexural performance with river sand also presented relatively lower resistance than micro silica sand, and the reduction was greater with larger particle size of river sand. The flexural performance was proven to be also influenced by the difference in the fiber orientation distribution due to the size of river sand.

Effect of pH on the Size Distribution of Au Nanoparticles

  • Kang, Ae-Yeon;Park, Dae-Keun;Lee, Cho-Yeon;Yun, Wan-Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.390-390
    • /
    • 2011
  • The size distribution of gold nanoparticles (NPs) is an important factor in their application to various fields of nanotechnology such as nanodevice fabrication, nanobio measurements, medical diagnosis, and so on, since the properties of nanoparticles depend on the size. As the pH of the reaction mixture was increased, the size distribution of gold NPs synthesized via sodium citrate reduction method was getting narrower and it finally became quite mono-dispersive when the pH was higher than ca. 7. 0.1M NaOH solution was used in controlling the pH, while the ratio between sodium citrate and HAuCl4 was fixed to 3:1 whose initial pH was about 5. Scanning and tunneling electron microscopy and UV/Vis spectrometry were used to characterize the resulting Au NPs. The change of the size distribution of the NPs was discussed with the change of the reaction rate related to the change of hydroxyl ion concentration.

  • PDF

The Effects of Storage Amount and Ventilator Size on the Quality of Ginger During Cellar Storage (저장량과 환기구크기가 움저장 생강의 저장성에 미치는 영향)

  • 최윤희;이상복
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.195-202
    • /
    • 1995
  • An experiment was conducted to develop the simple methods of ginger storage which decrease the weight reduction and maintain good quality of ginger during the cellar storage. The stored boxes with volume of 0.03㎥ and ventilator diameter of 3, 4, 5cm was hurried under the ground(60, 80, 100cm) in the green house. During the cellar storage at the 100cm depth the average temperature and relative humidity in the stored box were remained in 11.7~16.3$^{\circ}C$ and 73%, respect. The higher storage amount and smaller size of ventilator size increased the CO2 concentration in the stored box, and the concentration in the stored box with 50% storage quantity rate and 3cm ventilator diameter size was more than 10% for about 2 months from early Feburary. The decay rate of ginger during the cellar storage increased with higher amount of storage quantity and smaller size of ventilator. The CO2 concentration was low and remained relatively constant with the deeper location of stored box under the ground, and the decay rate was lower in the deeper stored box. Germination rate increased with the deeper location of stored box, and with the lower storage quantity and larger ventilator size. The germination rate was low in the higher decay rate box. Weight loss, total sugar and moisture contents of ginger were decreased, while crude fiber and ash were increased during the storage.

  • PDF

Risk Perception and Risk Reduction Behaviors of Fashion Product Consumers in Internet Shopping Malls (인터넷 쇼핑몰에서 패션제품 소비자의 위험지각과 위험감소행동에 관한 연구)

  • Ha, Jong-Kyung
    • Korean Journal of Human Ecology
    • /
    • v.19 no.4
    • /
    • pp.675-685
    • /
    • 2010
  • This study analyzed risk perception and risk reduction behaviors of male and female college students in their twenties who purchased fashion products in internet shopping malls. It also investigated the relationship between risk perception and risk reduction behavior as well as the ways in which groups, categorized by risk perception, differed in their risk reduction behaviors. The results of this study were as follows: first, seven factors of risk perception were identified. These were product quality, shipping, product image, payment, economic feasibility, fear of other people's reactions, and size. Six types of risk reduction behavior were also identified. These were product comparison, word-of-mouth information search, price search, preference for name-brand, service comparison, and referring to experiences. Next, a correlational analysis of the factors of risk perception and those of risk reduction behavior showed several patterns. The highest positive correlation was between economic risk perception and product comparison behavior. In addition, shipping risk perception was positively correlated with service comparison behavior and product quality and product image had a positive correlation with word-of-mouth information search behavior. Third, customers of internet shopping malls could be categorized into three groups: shipping risk perception group, high risk perception group, and product quality risk perception group. The groups were shown by factor analysis to be significantly different to each other. Finally, risk reduction behavior was investigated according to the different groups of risk perception of the internet shopping malls and the results showed significant differences among groups.