DOI QR코드

DOI QR Code

Experimental Observations for Anode Optimization of Oxide Reduction Equipment

  • Received : 2022.08.04
  • Accepted : 2022.10.20
  • Published : 2022.12.30

Abstract

The electrochemical behavior was investigated during the electrolysis of nickel oxide in LiCl-Li2O salt mixture at 650℃ by changing several components. The focus of this work is to improve anode design and shroud design to increase current densities. The tested components were ceramic anode shroud porosity, porosity size, anode geometry, anode material, and metallic porous anode shroud. The goal of these experiments was to optimize and improve the reduction process. The highest contributors to higher current densities were anode shroud porosity and anode geometry.

Keywords

Acknowledgement

The authors would like to acknowledge the Engineering Development Laboratory at Idaho National Laboratory, along with machining alterations from Ron Wallace and electrical engineering from Dean Burt. Parts, procurement, and mechanical engineering was led by Dale Wahlquist.

References

  1. G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, Vol. 2, 15-28, CRC Press, Florida (2003).
  2. N.Z. Jankovic and D.L. Plata, "Engineered Nanomaterials in the Context of Global Element Cycles", Environ. Sci.: Nano, 6(9), 2697-2711 (2019). https://doi.org/10.1039/C9EN00322C
  3. J. Lindley, "Tetrahedron Report Number 163: Copper Assisted Nucleophilic Substitution of Aryl Halogen", Tetrahedron, 40(9), 1433-1456 (1984). https://doi.org/10.1016/S0040-4020(01)91791-0
  4. G.L. Song, Corrosion Prevention of Magnesium Alloys, 1st ed., Woodhead Publishing, Sawston (2013).
  5. K.S. Mohandas, "Direct Electrochemical Conversion of Metal Oxides to Metal by Molten Salt Electrolysis: A Review", Mineral Process. Extr. Metall., 122(4), 195-212 (2013). https://doi.org/10.1179/0371955313Z.00000000069
  6. S.M. Jeong, H.S. Shin, S.H. Cho, J.M. Hur, and H. Lee, "Electrochemical Behavior of a Platinum Anode for Reduction of Uranium Oxide in a LiCl Molten Salt", Electrochim. Acta, 54(26), 6335-6340 https://doi.org/10.1016/j.electacta.2009.05.080
  7. P. Kar and J.W. Evans, "A Model for the Electrochemical Reduction of Metal Oxides in Molten Salt Electrolytes", Electrochim. Acta, 54(2), 835-843 (2008). https://doi.org/10.1016/j.electacta.2008.06.040
  8. K. Yasunda, T. Nohira, R. Hagiwara, and Y.H. Ogata, "Direct Electrolytic Reduction of Solid SiO2 in Molten CaCl2 for the Production of Solar Grade Silicon", Electrochim. Acta, 53(1), 106-110 (2007). https://doi.org/10.1016/j.electacta.2007.01.024
  9. S.M. Jeong, J.M. Hur, S.S. Hong, D.S. Kang, M.S. Choung, C.S. Seo, J.S. Yoon, and S.W. Park, "An Electrochemical Reduction of Uranium Oxide in the Advanced Spent-Fuel Conditioning Process", Nucl. Technol., 162(2), 184-191 (2008). https://doi.org/10.13182/nt162-184
  10. T. Wu, X. Jin, W. Xiao, X. Hu, D. Wang, and G.Z. Chen, "Thin Pellets: Fast Electrochemical Preparation of Capacitor Tantalum Powders", Chem. Mater., 19(2), 153-160 (2007). https://doi.org/10.1021/cm0618648
  11. S.M. Jeong, H.S. Shin, S.S. Hong, J.M. Hur, J.B. Do, and H.S. Lee, "Electrochemical Reduction Behavior of U3O8 Powder in a LiCl Molten Salt", Electrochim. Acta, 55(5), 1749-1755 (2010). https://doi.org/10.1016/j.electacta.2009.10.060
  12. S.D. Herrmann, S.X. Li, M.F. Simpson, and S. Phongikaroon, "Electrolytic Reduction of Spent Nuclear Oxide Fuel as a Part of an Integral Process to Separate and Recover Actinides From Fission Products", Sep. Sci. Technol., 41(10), 1965-1983 (2006). https://doi.org/10.1080/01496390600745602
  13. M.F. Simpson. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory, Idaho National Laboratory Technical Report, INL/EXT-12-25124 (2012).
  14. C.S. Seo, S.B. Park, B.H. Park, K.J. Jung, S.W. Park, and S.H. Kim, "Electrochemical Study on the Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt", J. Nucl. Sci. Technol., 43(5), 587-595 (2006). https://doi.org/10.3327/jnst.43.587
  15. S.B. Park, B.H. Park, S.M. Jeong, J.M. Hur, C.S. Seo, S.H. Choi, and S.W. Choi, "Characteristics of an Integrated Cathode Assembly for the Electrlytic Reduction of Uranium Oxide in a LiCl-Li2O Molten Salt", J. Radioanal. Nucl. Chem., 268(3), 489-495 (2006). https://doi.org/10.1007/s10967-006-0196-4
  16. E.Y. Choi, M.K. Jeon, J. Lee, S.W. Kim, S.K. Lee, S.J. Lee, D.H. Heo, H.W. Kang, S.C. Jeon, and J.M. Hur, "Reoxidation of Uranium Metal Immersed in a Li2OLiCl Molten Salt After Electrolytic Reduction of Uranium Oxide", J. Nucl. Mater., 485, 90-97 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.017
  17. J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang, and S.W. Park, "Electrochemical Reduction of Uranium Oxides in Li2O-LiCl Molten-Salt", Progress in Partitioning and Waste Forms Seventh Information Exchange Meeting on Actinide and Fission Product Partitioning and Transmutation, 355, October 14-16, 2003, Jeju.
  18. S.C. Oh, J.M. Hur, C.S. Seo, and S.W. Park, "A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li2O Molten Salt", J. Korean Radioact. Waste Soc., 1(1), 25-39 (2003).
  19. E.Y. Choi, I.K. Choi, J.M. Hur, D.S. Kang, H.S. Shin, and S.M. Jeong, "In Situ Electrochemical Measurement of O2- Concentration in Molten Li2O/LiCl During Uranium Oxide Reduction Process", Electrochem. Solid-State Lett., 15(3), E11 (2011). https://doi.org/10.1149/2.016203esl
  20. J.M. Hur, C.S. Seo, S.S. Hong, D.S. Kang, and S.W. Park, "Metallization of U3O8 Via Catalytic Electrochemical Reduction With Li2O in LiCl Molten Salt", React. Kinet. Catal. Lett., 80(2), 217-222 (2003). https://doi.org/10.1023/B:REAC.0000006128.15961.1d
  21. S.D. Herrmann, P.K. Tripathy, S.M. Frank, and J.A. King, "Comparative Study of Monolithic Platinum and Iridium as Oxygen-Evolving Anodes During the Electrolytic Reduction of Uranium Oxide in a Molten LiCl-Li2O Electrolyte", J. Appl. Electrochem., 49(4), 379-388 (2019). https://doi.org/10.1007/s10800-019-01287-1
  22. S. Phongikaroon, S.D. Herrmann, and M.F. Simpson, "Diffusion Model for Electrolytic Reduction of Uranium Oxides in Molten LiCl-Li2O Salt", Nucl. Technol., 174(1), 85-93 (2011). https://doi.org/10.13182/NT171-85
  23. J.S. Seo, J.M. Hur, W.K. Lee, S.S. Hong, D.S. Kang, and S.W. Park, "A Study on the Reduction of Uranium Oxide to Uranium Metal in LiCl Molten Salt", Conference: 2022 Joint Spring Meeting of the Korean Nuclear Society-The Korean Association for Radiation Protection, May 23-24, 2002, Gwangju.
  24. S.D. Herrmann, S.X. Li, and B.E. Serrano-Rodriguez, "Observations of Oxygen Ion Behavior in the LithiumBased Electrolytic Reduction of Uranium Oxide", INL/CON-08-15165, 1199-1206, Idaho National Laboratory, Paris (2009).