• Title/Summary/Keyword: size effect model

Search Result 2,032, Processing Time 0.027 seconds

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

Numerical study on the effect of viscoelasticity on pressure drop and film thickness for a droplet flow in a confined microchannel

  • Chung, Chang-Kwon;Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.59-69
    • /
    • 2009
  • The prediction of pressure drop for a droplet flow in a confined micro channel is presented using FE-FTM (Finite Element - Front Tracking Method). A single droplet is passing through 5:1:5 contraction - straight narrow channel - expansion flow domain. The pressure drop is investigated especially when the droplet flows in the straight narrow channel. We explore the effects of droplet size, capillary number (Ca), viscosity ratio ($\chi$) between droplet and medium, and fluid elasticity represented by the Oldroyd-B constitutive model on the excess pressure drop (${\Delta}p^+$) against single phase flow. The tightly fitted droplets in the narrow channel are mainly considered in the range of $0.001{\leq}Ca{\leq}1$ and $0.01{\leq}{\chi}{\leq}100$. In Newtonian droplet/Newtonian medium, two characteristic features are observed. First, an approximate relation ${\Delta}p^+{\sim}{\chi}$ observed for ${\chi}{\geq}1$. The excess pressure drop necessary for droplet flow is roughly proportional to $\chi$. Second, ${\Delta}p^+$ seems inversely proportional to Ca, which is represented as ${\Delta}p^+{\sim}Ca^m$ with negative m irrespective of $\chi$. In addition, we observe that the film thickness (${\delta}_f$) between droplet interface and channel wall decreases with decreasing Ca, showing ${\delta}_f{\sim}Ca^n$ Can with positive n independent of $\chi$. Consequently, the excess pressure drop (${\Delta}p^+$) is strongly dependent on the film thickness (${\delta}_f$). The droplets larger than the channel width show enhancement of ${\Delta}p^+$, whereas the smaller droplets show no significant change in ${\Delta}p^+$. Also, the droplet deformation in the narrow channel is affected by the flow history of the contraction flow at the entrance region, but rather surprisingly ${\Delta}p^+$ is not affected by this flow history. Instead, ${\Delta}p^+$ is more dependent on ${\delta}_f$ irrespective of the droplet shape. As for the effect of fluid elasticity, an increase in ${\delta}_f$ induced by the normal stress difference in viscoelastic medium results in a drastic reduction of ${\Delta}p^+$.

An Impact Assessment on Atmospheric Dispersion of Pesticide using AGDISP Model (AGDISP모델을 이용한 농약의 대기확산 영향평가)

  • Kim, Jeong-Hwan;Koo, Youn-Seo;Lee, Seung-Hoon
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.547-556
    • /
    • 2013
  • Recently, golf courses have increased over the years because golf became popular leisure sport. Various environmental problems have been then issued by a golf course during constructing and running them. A problem of pesticide, which is serious among various environmental problems, from golf course has harmful effect on surrounding area and makes human suffer from acute and chronic diseases. Pesticides are used for the cost-effective managing of golf course and the amount of pesticides also increases as the number of golf course increase. Since the assessment of pesticides on near-by surrounding has been focused on water and soil media, studies related to atmospheric dispersion have been hardly attempted. The method to assess an impact of pesticide nearby agricultural production by the atmospheric dispersion using AGDISP(AGricultural DISPersal) model was developed and applied to the actual planned golf course located in Hongcheon, Gangwon. For implementing AGDISP, parameters were investigated from the golf course's land use planning map, pesticide spray device, Hong-Cheon weather station and etc. First of all, a kind of pesticide, a form of spraying pesticide, geographical features, weather data, and distance(golf course to plantation) were investigated to understand how to work these parameters in AGDISP. Restricted data(slope angle, droplet size distribution and solar insolation) sensitivity analysis of these parameters to estimate effect of pesticide nearby a plantation and a high relative contribution data of analyzed data was selected for input data. Ethoprophos was chosen as the pesticide used in the golf course and the amounts of pesticide deposition per annual agricultural productions were predicted. The results show that maximum amount of pesticide deposition through atmospheric dispersion was predicted $2.32{\mu}/m^2$ at 96 m where the nearest organic plantation exists. The residues of pesticide were also estimated based on the annul production of the organic and the deposition amount of the pesticide. Consequently, buckwheat, wheat and millet were likely to exceed maximum residue limits for pesticides in foods(MRL) and sorghum, corn and peanut were likely to exceed MRL by organic farming as well.

Transaction Costs in an Emission Trading Scheme: Application of a Simple Autonomous Trading Agent Model

  • Lee, Kangil;Han, Taek-Whan;Cho, Yongsung
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.27-67
    • /
    • 2012
  • This paper analyzed the effect of transaction costs on the prices and trading volumes at the initial stage of emission markets and also examined how the size of the effect differs depending on the characteristics of the transactions. We built trading protocols modeling a recursive process to search the trading partner and make transactions with several behavioral assumptions considering the situations of early markets. The simulations results show that adding transaction costs resulted in reduction of trading volumes. Furthermore, the speed of reduction in trading volume to the increase of transaction costs is higher when there is scale economy. With a certain level of scale economy, the trading volumes abruptly fall down to almost zero as the transaction cost gets over a certain level. This suggests the possibility of a failed market. Since the scale economy is thought to be significant in the early stage of emission trading market, it is desirable to design a trading system that maximizes trading volumes and minimizes unit transaction costs at the outset. One of the alternatives to meet these conditions is to establish a centralized exchange and take measures to increase trading volumes.

  • PDF

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1999.04a
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

EFFECT OF SOFT CHELATING IRRIGATION ON THE SEALING ABILITY OF GP/AH PLUS ROOT FILLINGS (Soft chelating irrigation이 GP/AH Plus로 충전된 근관의 sealing ability에 미치는 영향에 대한 평가)

  • Yu, Yi-Suk;Kim, Tae-Gun;Lee, Kwang-Won;Yu, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.34 no.6
    • /
    • pp.484-490
    • /
    • 2009
  • The purpose of this study was to evaluate the effect of soft chelating irrigant on the sealing ability of root fillings by using a glucose leakage test. A total of 45 single-rooted teeth were selected for the study. The teeth were decoronated leaving a total length of 13mm. The root canals prepared using K3 NiTi rotary instruments to an apical dimension of size 45(0.06 taper). The specimens were then randomly divided into 3 experimental groups of 13 roots each and 2 control groups of 3 roots each. Specimen in each group were prepared with different irrigation protocols : group 1, 2.5% NaOCl; group 2, 2.5% NaOCl and 17% EDTA: group 3, 2.5% NaOCl and 15% HEBP. The root canals were filled with gutta-percha and AH Plus sealer using lateral condensation. After 7 days in $37^{\circ}C$, 100% humidity, the coronal-to-apical microleakage was evaluated quantitatively using a glucose leakage model. The leaked glucose concentration was measured with spectrophotometry at 1, 4, 7, 14, 21 and 28 days. There was a tendency of increase in leakage in all experimental groups during experimental period. HEBP-treated dentin showed no significant difference with EDTA-treated dentin during experimental period. From the 21th day onward, HEBP-treated dentin showed significantly lower leakage than smear-covered dentin. HEBP-treated dentin displayed a similar sealing pattern to EDTA-treated dentin and a better sealing ability than smear-covered dentin. Consequently, a soft chelator(HEBP) could be considered as the possible alternative to EDTA.

The Analysis on the Causal Model between Self-directedness, Learning Flow, Career Decision and Self-efficacy, and Career Exploration Behavior of Undergraduate Students (대학생의 자기주도성, 학습몰입, 진로결정효능감과 진로탐색행동 간의 관계 구조분석)

  • Myung-Sook Kang;Eun-Ryoung Bang
    • Korean Journal of Culture and Social Issue
    • /
    • v.20 no.4
    • /
    • pp.443-467
    • /
    • 2014
  • The purpose of this study was to analysis the causal model between self-directedness, learning flow, career decision and self-efficacy, and career exploration behavior of undergraduate students. A survey was conducted on 604 undergraduate students, and Structural Equation Modeling was used to analyze. The major findings were as follows: First, learning flow and career decision self-efficacy were found to have positive impacts on career exploration behavior. However, self-directedness was found to have no significant direct impacts on career exploration behavior. Second, self-directedness was found to have positive impacts on learning flow and career decision self-efficacy. Finally, learning flow and career decision self-efficacy were found to have perfect mediating effects on the relationships between self-directedness and career exploration behavior. Considering the size of the specific indirect effect, the mediating effects of learning flow was relatively larger than those of career decision self-efficacy. Based on the results, discussions to increase career exploration behavior were made as well as suggestions for future research.

  • PDF

Implementation agency effect on Self-Sufficiency of Participants in Self-Support Program (자활사업 집행기관이 자활사업 참여자의 자활효과에 미치는 영향 - 위계선형모형(HLM)의 적용을 중심으로 -)

  • Lee, Young-Chul;Kim, So-Joung
    • Korean Journal of Social Welfare Studies
    • /
    • v.40 no.2
    • /
    • pp.227-252
    • /
    • 2009
  • This study set out to investigate implementation agency effect on participants' self-sufficiency in self-support program. Self-support program's implementation agency consist of civil groups and social welfare corporations. The final sample size was 602 program participants and 18 implementation agencies in Gwangju city, South Korea. Two-level hierarchical linear model was used for analysis. The major findings of this study are as follows. First, civil groups' participants were healthier, more often participated in business model, earned higher monthly income, participated shorter time rather than participants in social welfare corporation. Second, civil groups' participants showed low level of self-sufficiency than participants in social welfare corporations. These results means that self-support policy is not delivered uniformly because front-line implementation agencies develop work habits that influence the outcome of policy. And limitations and implications of this study were discussed with respect to further studies.

Determinants of Efficiency of Specialty Construction Companies Using DEA and Tobit Regression Models (DEA와 토빗회귀 모형을 이용한 전문건설기업 효율성 결정요인 분석)

  • Jung, Dae-Woon;Son, Young-Hoon;Kim, Kyung-Rai
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.2
    • /
    • pp.45-55
    • /
    • 2024
  • This study analyzed the efficiency determinants of specialty construction companies by industry using the DEA model and the Tobit model. The analysis targets are 394 specialty construction companies as of 2022. As a result of analysis of efficiency determinants using 12 company characteristics as independent variables, the biggest problem for specialty construction companies was overall efficiency reduction due to rising labor costs. In addition, in a situation where construction companies' loan regulations are severe, the debt ratio was found to have a positive effect on efficiency. Company size had a different impact by industry, and the number of businesses held, credit score, and total capital turnover had an effect only on some industries. This study presents results that are an advance on existing research in that it strategically analyzes factors for improving the efficiency of specialty construction companies. However, it has limitations such as limiting the analysis to only specialty construction companies subject to external audit, insufficient number of companies subject to analysis by industry, and analyzing relative efficiency in the same category for each industry.