• 제목/요약/키워드: size dependent behavior

검색결과 254건 처리시간 0.028초

Size-dependent plastic buckling behavior of micro-beam structures by using conventional mechanism-based strain gradient plasticity

  • Darvishvand, Amer;Zajkani, Asghar
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.223-232
    • /
    • 2019
  • Since the actuators with small- scale structures may be exposed to external reciprocal actions lead to create undesirable loads causing instability, the buckling behaviors of them are interested to make reliable or accurate actions. Therefore, the purpose of this paper is to analyze plastic buckling behavior of the micro beam structures by adopting a Conventional Mechanism-based Strain Gradient plasticity (CMSG) theory. The effect of length scale on critical force is considered for three types of boundary conditions, i.e. the simply supported, cantilever and clamped - simply supported micro beams. For each case, the stability equations of the buckling are calculated to obtain related critical forces. The constitutive equation involves work hardening phenomenon through defining an index of multiple plastic hardening exponent. In addition, the Euler-Bernoulli hypothesis is used for kinematic of deflection. Corresponding to each length scale and index of the plastic work hardening, the critical forces are determined to compare them together.

라텍스 입자구조가 필름형성 및 필름물성에 미치는 영향 (II);모델 복합 라텍스 입자의 필름형성 거동 (Effect of Latex Particle Morphology on the Film Properties of Acrylic Coatings (II);Film Forming Behavior of Model Composite Latex)

  • 주인호;우종표
    • 한국응용과학기술학회지
    • /
    • 제21권2호
    • /
    • pp.132-139
    • /
    • 2004
  • Film forming behavior of monodispersed model composite latexes with particle size of 190 nm, which consist of n-butyl acrylate as a soft phase monomer and methyl methacrylate as a hard phase monomer with different morphology was examined. Five different types of model latexes were used in this study such as random copolymer particle, soft-core/hard-shell particle, hard-core/soft-shell particle, gradient type particle, and mixed type particle. The film forming behavior was evaluated using pseudo on-line measurements of the cumulative weight loss, the UV transmittance, and the tensile fracture energy. Each stages of film formation I, II were not sensitive to the morphology of model latexes, but stage-ill was largely dependent on the morphology of model latexes. The chain mobility of polymer which composed the shell component was found to dominantly determine the behavior of film forming stage-III.

Geometry impact on the stability behavior of cylindrical microstructures: Computer modeling and application for small-scale sport structures

  • Yunzhong Dai;Zhiyong Jiang;Kuan-yu Chen;Duquan Zuo;Mostafa habibi;H. Elhosiny Ali;Ibrahim Albaijan
    • Steel and Composite Structures
    • /
    • 제48권4호
    • /
    • pp.443-459
    • /
    • 2023
  • This paper investigates the stability of a bi-directional functionally graded (BD-FG) cylindrical beam made of imperfect concrete, taking into account size-dependency and the effect of geometry on its stability behavior. Both buckling and dynamic behavior are analyzed using the modified coupled stress theory and the classical beam theory. The BD-FG structure is created by using porosity-dependent FG concrete, with changing porosity voids and material distributions along the pipe radius, as well as uniform and nonuniform radius functions that vary along the beam length. Energy principles are used to generate partial differential equations (PDE) for stability analysis, which are then solved numerically. This study sheds light on the complex behavior of BD-FG structures, and the results can be useful for the design of stable cylindrical microstructures.

Impulse Buying Behavior in Distribution Centers of Kathmandu

  • Bharat RAI;Rewan Kumar DAHAL;Bhupendra Jung SHAHI;Binod GHIMIRE
    • 유통과학연구
    • /
    • 제21권5호
    • /
    • pp.19-29
    • /
    • 2023
  • Purpose: The study's primary objective was to pinpoint the variables impacting consumers' impulsive purchasing decisions in the distribution centers in Kathmandu, the capital city of Nepal. Research design, data, and methodology: The independent variables used to identify consumer impulse buying behavior were the in-store displays, store employee behavior, reference groups, and promotional activities. A 6-point Likert scale questionnaire was employed for collecting the primary data from customers at the retail center of Kathmandu. The study's sample size was 396, employing a convenient sampling method. Statistical Package for the Social Sciences (SPSS) and Analysis of a Moment Structures (AMOS) have been used to show the relationships between dependent and independent variables. Results: The outcome of the path analysis using structural equation modeling demonstrates that in-store displays, reference groups, and store employees' behavior significantly influence the customers' impulse buying decisions in the distribution center. Additionally, it has been discovered that promotional activities have no significant impact on consumers' impulsive purchasing decisions made at the retail center of Kathmandu. Conclusions and Implications: The study's findings indicate that the actions of store personnel, reference groups, and in-store displays significantly contribute to the acceleration of impulsive purchases. Such findings provide researchers and business executives with a road map for the future.

Stability analysis of functionally graded heterogeneous piezoelectric nanobeams based on nonlocal elasticity theory

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • 제6권2호
    • /
    • pp.93-112
    • /
    • 2018
  • An analytical solution of the buckling governing equations of functionally graded piezoelectric (FGP) nanobeams obtained by using a developed third-order shear deformation theory is presented. Electro-mechanical properties of FGP nanobeam are supposed to change continuously in the thickness direction based on power-law model. To capture the small size effects, Eringen's nonlocal elasticity theory is adopted. Employing Hamilton's principle, the nonlocal governing equations of a FG nanobeams made of piezoelectric materials are obtained and they are solved using Navier-type analytical solution. Results are provided to show the effect of different external electric voltage, power-law index, nonlocal parameter and slenderness ratio on the buckling loads of the size-dependent FGP nanobeams. The accuracy of the present model is verified by comparing it with nonlocal Timoshenko FG beams. So, this study makes the first attempt for analyzing buckling behavior of higher order shear deformable FGP nanobeams.

나노 구리 분말의 냉간정수압 공정에 대한 치밀화 거동 해석 (Analysis of Densification Behavior of Nano Cu Powders during Cold Isostatic Pressing)

  • 윤승채;김형섭;이창규
    • 한국분말재료학회지
    • /
    • 제11권4호
    • /
    • pp.341-347
    • /
    • 2004
  • In the study, a hybrid constitutive model for densification of metallic powders was applied to cold isostatic pressing. The model is based on a pressure-dependent plasticity model for porous materials combined with a dislocation density-based viscoplastic constitutive model considering microstructural features such as grain size and inter-particle spacing. Comparison of experiment and calculated results of microscale and nanoscale Cu powders was made. This theoretical approach is useful for powder densification analysis of various powder sizes, deformation routes and powder processing methods.

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad;Shafiei, Navvab
    • Smart Structures and Systems
    • /
    • 제17권5호
    • /
    • pp.837-857
    • /
    • 2016
  • In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

보이드 성장을 고려한 재료의 성형한계에 대한 비 국소 해석 (Non-Local Analysis of Forming Limits of Ductile Material Considering Damage Growth)

  • 김영석;원성연
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.914-922
    • /
    • 2003
  • In this paper, the strain localization of voided ductile material has been analyzed by nonlocal plasticity formulation in which the yield strength not only depends on an equivalent plastic strain measure (hardening parameter), but also on the Laplacian thereof. The gradient terms in yield criterion show an important role on modeling strain-softening phenomena of material. The influence of the mesh size on the elastic -plastic deformation behavior and the effect of the characteristic length parameter for localization prediction are also investigated. The proposed nonlocal plasticity shows that the load -strain curves converge to one curve. Results using nonlocal plasticity also exhibit the dependence of mesh size is much less sensitivity than that for a corresponding local plasticity formulation.

탄소성접촉면의 나노스케일 열접촉저항 (Thermal contact resistance on elastoplastic nanosized contact spots)

  • 이상영;조현;장용훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2214-2219
    • /
    • 2008
  • The thermal contact resistance(TCR) of nanosized contact spots has been investigated through a multiscale analysis which considers the resolution of surface topography. A numerical simulation is performed on the finite element model of rough surfaces. Especially, as the contact size decreases below the phonon mean free path, the size dependent thermal conductivity is considered to calculate the TCR. In our earlier model which follows an elastic material, the TCR increases without limits as the number of nanosized contact spots increases in the process of scale variation. However, the elastoplastic contact induces a finite limit of TCR as the scale varies. The results are explained through the plastic behavior of the two contacting models. Furthermore, the effect of air conduction in nanoscale is also investigated.

  • PDF

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • 제27권6호
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.