DOI QR코드

DOI QR Code

Application of Eringen's nonlocal elasticity theory for vibration analysis of rotating functionally graded nanobeams

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Shafiei, Navvab (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University)
  • Received : 2015.06.19
  • Accepted : 2016.03.13
  • Published : 2016.05.25

Abstract

In the present study, for first time the size dependent vibration behavior of a rotating functionally graded (FG) Timoshenko nanobeam based on Eringen's nonlocal theory is investigated. It is assumed that the physical and mechanical properties of the FG nanobeam are varying along the thickness based on a power law equation. The governing equations are determined using Hamilton's principle and the generalized differential quadrature method (GDQM) is used to obtain the results for cantilever boundary conditions. The accuracy and validity of the results are shown through several numerical examples. In order to display the influence of size effect on first three natural frequencies due to change of some important nanobeam parameters such as material length scale, angular velocity and gradient index of FG material, several diagrams and tables are presented. The results of this article can be used in designing and optimizing elastic and rotary type nano-electro-mechanical systems (NEMS) like nano-motors and nano-robots including rotating parts.

Keywords

References

  1. Akgoz, B. and Civalek, O. (2012), "Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory", Meccanica, 48(4), 863-873. https://doi.org/10.1007/s11012-012-9639-x
  2. Akgoz, B. and Civalek, O. (2014a), "Shear deformation beam models for functionally graded microbeams with new shear correction factors", Compos. Struct., 112, 214-225. https://doi.org/10.1016/j.compstruct.2014.02.022
  3. Akgoz, B. and Civalek, O. (2014b), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  4. Alshorbagy, A.E., Eltaher, M. and Mahmoud, F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Modell., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006
  5. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  6. Aranda-Ruiz, A.J., Loya, J. and Fernandez-Saez, J. (2012), "Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory", Compos. Struct., 94(9), 2990-3001. https://doi.org/10.1016/j.compstruct.2012.03.033
  7. Asgharl, M., Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M. (2011), "The modified couple stress functionally graded Timoshenko beam formulation", Mater. Des., 32(3), 1435-1443. https://doi.org/10.1016/j.matdes.2010.08.046
  8. Avcar, M. (2015), "Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam", Struct. Eng. Mech., 55(4), 871-884. https://doi.org/10.12989/sem.2015.55.4.871
  9. Bath, J. and Turberfield, A. J. (2007), "DNA nanomachines", Nat Nano, 2, 275-284. https://doi.org/10.1038/nnano.2007.104
  10. Bellman, R. and Casti, J. (1971), "Differential quadrature and long-term integration", J. Math. Anal. Appl., 34(2), 235-238. https://doi.org/10.1016/0022-247X(71)90110-7
  11. Bellman, R., Kashef, B. and Casti, J. (1972), "Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations", J. Comput. Phys., 10(1), 40-52. https://doi.org/10.1016/0021-9991(72)90089-7
  12. Challamel, N. and Wang, C.M. (2008), "The small length scale effect for a non-local cantilever beam: a paradox solved", Nanotechnology, 19(34), 345703. https://doi.org/10.1088/0957-4484/19/34/345703
  13. Chen, L., Nakamura, M., Schindler, T.D., Parker, D. and Bryant, Z. (2012), "Engineering controllable bidirectional molecular motors based on myosin", Nat Nano, 7, 252-256. https://doi.org/10.1038/nnano.2012.19
  14. Civalek, O. and Akgoz, B. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Comput. Mater. Sci., 77, 295-303. https://doi.org/10.1016/j.commatsci.2013.04.055
  15. Civalek, O. and Demir, C. (2011), "Bending analysis of microtubules using nonlocal Euler-Bernoulli beam theory", Appl. Math. Modell., 35(5), 2053-2067. https://doi.org/10.1016/j.apm.2010.11.004
  16. Dehrouyeh-Semnani, A. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163. https://doi.org/10.1016/j.ijengsci.2015.05.009
  17. Dehrouyeh-Semnani, A.M. (2015), "The influence of size effect on flapwise vibration of rotating microbeams", Int. J. Eng. Sci., 94, 150-163. https://doi.org/10.1016/j.ijengsci.2015.05.009
  18. Dewey, H. and Hodges, M.J.R. (1981), "Free-vibration analysis of rotating beams by a variable-order finite-element method", AIAA, 19(11).
  19. Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091524.
  20. Ebrahimi, F. and Salari, E. (2015b), "Thermal buckling and free vibration analysis of size dependent Timoshenko FG nanobeams in thermal environments", Compos. Struct., 128, 363-380. https://doi.org/10.1016/j.compstruct.2015.03.023
  21. Eltaher, M., Emam, S.A. and Mahmoud F. (2012), "Free vibration analysis of functionally graded size-dependent nanobeams", Appl. Math. Comput., 218(14), 7406-7420. https://doi.org/10.1016/j.amc.2011.12.090
  22. Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030
  23. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  24. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  25. Eringen, A.C. and Edelen, D.G.B. (1972), "On nonlocal elasticity", Int. J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0
  26. Ghadiri, M., Hosseni, S. and Shafiei, N. (2015), "A power series for vibration of a rotating nanobeam with considering thermal effect", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1091527.
  27. Ghadiri, M. and Shafiei, N. (2015), "Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen‟s theory using differential quadrature method", Microsyst. Technol., doi: 10.1007/s00542-015-2662-9.
  28. Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of a nano-turbine blade based on Eringen nonlocal elasticity applying the differential quadrature method", J. Vib. Control, doi: 10.1177/1077546315627723.
  29. Ghadiri, M., Shafiei, N. and Safarpour, H. (2016), "Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen‟s nonlocal elasticity", Microsyst. Technol., doi: 10.1007/s00542-016-2822-6.
  30. Goel, A. and Vogel, V. (2008), "Harnessing biological motors to engineer systems for nanoscale transport and assembly", Nat Nano, 3, 465-475. https://doi.org/10.1038/nnano.2008.190
  31. Kaya, M.O. (2006), "Free vibration analysis of a rotating Timoshenko beam by differential transform method", Aircraft Eng. Aerospace Technol., 78(3), 194-203. https://doi.org/10.1108/17488840610663657
  32. Ke, L.L. and Wang, Y.S. (2011), "Size effect on dynamic stability of functionally graded microbeams based on a modified couple stress theory", Compos. Struct., 93(2), 342-350. https://doi.org/10.1016/j.compstruct.2010.09.008
  33. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Nonlinear free vibration of size-dependent functionally graded microbeams", Int. J. Eng. Sci., 50(1), 256-267. https://doi.org/10.1016/j.ijengsci.2010.12.008
  34. Lee, L.K., Ginsburg, M.A., Crovace, C., Donohoe, M. and Stock, D. (2010), "Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching", Nature, 466(7309), 996-1000. https://doi.org/10.1038/nature09300
  35. Lim, C., Li, C. and Yu, J. (2009), "The effects of stiffness strengthening nonlocal stress and axial tension on free vibration of cantilever nanobeams", Interact. Multiscale Mech., 2, 223-233. https://doi.org/10.12989/imm.2009.2.3.223
  36. Lubbe, A.S., Ruangsupapichat, N., Caroli, G. and Feringa, B.L. (2011), "Control of rotor function in light-driven molecular motors", J. Organic Chem., 76(21), 8599-8610. https://doi.org/10.1021/jo201583z
  37. Metin aydogdu, V.T. (2007), "Free vibration analysis of functionally graded beams with simply supported edges", Mater. Des., 28(5), 1651-1656. https://doi.org/10.1016/j.matdes.2006.02.007
  38. Murmu, T. and Adhikari, S. (2010), "Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation", J. Appl. Phys., 108(12).
  39. Narendar, S. (2012), "Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia", Appl. Math. Comput., 219(3), 1232-1243. https://doi.org/10.1016/j.amc.2012.07.032
  40. Narendar, S. and Gopalakrishnan, S. (2011), "Nonlocal wave propagation in rotating nanotube", Result. Phys., 1(1), 17-25. https://doi.org/10.1016/j.rinp.2011.06.002
  41. Nazemnezhad, R. and Hosseini-Hashemi, S. (2014), "Nonlocal nonlinear free vibration of functionally graded nanobeams", Compos. Struct., 110, 192-199. https://doi.org/10.1016/j.compstruct.2013.12.006
  42. Pradhan, S.C. and Murmu, T. (2010), "Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever", Physica E: Low-dimensional Systems and Nanostructures, 42, 1944-1949. https://doi.org/10.1016/j.physe.2010.03.004
  43. Rahmani, O. and Pedram, O. (2014), "Analysis and modeling the size effect on vibration of functionally graded nanobeams based on nonlocal Timoshenko beam theory", Int. J. Eng. Sci., 77, 55-70. https://doi.org/10.1016/j.ijengsci.2013.12.003
  44. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004
  45. Shafiei, N., Kazemi, M. and Fatahi, L. (2015), "Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method", Mech. Adv. Mater. Struct., doi: 10.1080/15376494.2015.1128025.
  46. Shafiei, N., Kazemi, M. and Ghadiri, M. (2016), "On size-dependent vibration of rotary axially functionally graded microbeam", Int. J. Eng. Sci., 101, 29-44. https://doi.org/10.1016/j.ijengsci.2015.12.008
  47. Shu, C. (2000), Differential quadrature and its application in engineering, Springer.
  48. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fl., 15, 791-798. https://doi.org/10.1002/fld.1650150704
  49. Simsek, M. (2010), "Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories", Nuclear Eng., 240(4), 697-705. https://doi.org/10.1016/j.nucengdes.2009.12.013
  50. Simsek, M. and Yurtcu, H. (2013), "Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory", Compos. Struct., 97, 378-386. https://doi.org/10.1016/j.compstruct.2012.10.038
  51. Tauchert, T. R. (1974), Energy principles in structural mechanics, McGraw-Hill Companies.
  52. Tierney, H.L., Murphy, C.J., Jewell, A.D., Baber, A.E., Iski, E.V., Khodaverdian, H.Y., Mcguire, A.F., Klebanov, N. and Sykes, E.C.H. (2011), "Experimental demonstration of a single-molecule electric motor", Nat Nano, 6, 625-629. https://doi.org/10.1038/nnano.2011.142
  53. Van delden, R.A., Ter wiel, M.K.J., Pollard, M.M., Vicario, J., Koumura, N. and Feringa, B.L. (2005), "Unidirectional molecular motor on a gold surface", Nature, 437, 1337-1340. https://doi.org/10.1038/nature04127
  54. Wang, C.M., Zhang, Y.Y. and He, X.Q. (2007), "Vibration of nonlocal Timoshenko beams", Nanotechnology, 18, 105401. https://doi.org/10.1088/0957-4484/18/10/105401

Cited by

  1. Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1125
  2. Wave propagation analysis of size-dependent rotating inhomogeneous nanobeams based on nonlocal elasticity theory 2017, https://doi.org/10.1177/1077546317711537
  3. Thermal effects on wave propagation characteristics of rotating strain gradient temperature-dependent functionally graded nanoscale beams vol.40, pp.5, 2017, https://doi.org/10.1080/01495739.2016.1230483
  4. Forced Vibration Analysis of Functionally Graded Nanobeams vol.09, pp.07, 2017, https://doi.org/10.1142/S1758825117501009
  5. Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory vol.45, 2017, https://doi.org/10.1016/j.apm.2016.12.006
  6. Wave propagation analysis of rotating thermoelastically-actuated nanobeams based on nonlocal strain gradient theory vol.30, pp.6, 2017, https://doi.org/10.1016/j.camss.2017.09.007
  7. Thermo-electro-mechanical bending of FG piezoelectric microplates on Pasternak foundation based on a four-variable plate model and the modified couple stress theory vol.24, pp.2, 2018, https://doi.org/10.1007/s00542-017-3492-8
  8. Modified porosity model in analysis of functionally graded porous nanobeams vol.40, pp.3, 2018, https://doi.org/10.1007/s40430-018-1065-0
  9. Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures vol.24, pp.6, 2018, https://doi.org/10.1007/s00542-018-3800-y
  10. Large amplitude free vibration analysis of functionally graded nano/micro beams on nonlinear elastic foundation vol.61, pp.2, 2017, https://doi.org/10.12989/sem.2017.61.2.209
  11. A new shear deformation plate theory with stretching effect for buckling analysis of functionally graded sandwich plates vol.24, pp.5, 2017, https://doi.org/10.12989/scs.2017.24.5.569
  12. A four variable refined nth-order shear deformation theory for mechanical and thermal buckling analysis of functionally graded plates vol.13, pp.3, 2016, https://doi.org/10.12989/gae.2017.13.3.385
  13. Nonlocal thermo-electro-mechanical vibration analysis of smart curved FG piezoelectric Timoshenko nanobeam vol.20, pp.3, 2016, https://doi.org/10.12989/sss.2017.20.3.351
  14. A new and simple HSDT for thermal stability analysis of FG sandwich plates vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.157
  15. Surface effects on vibration and buckling behavior of embedded nanoarches vol.64, pp.1, 2017, https://doi.org/10.12989/sem.2017.64.1.001
  16. Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment vol.64, pp.1, 2016, https://doi.org/10.12989/sem.2017.64.1.121
  17. Variability of thermal properties for a thermoelastic loaded nanobeam excited by harmonically varying heat vol.20, pp.4, 2016, https://doi.org/10.12989/sss.2017.20.4.451
  18. Free vibration of functionally graded plates resting on elastic foundations based on quasi-3D hybrid-type higher order shear deformation theory vol.20, pp.4, 2017, https://doi.org/10.12989/sss.2017.20.4.509
  19. An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates vol.25, pp.3, 2016, https://doi.org/10.12989/scs.2017.25.3.257
  20. A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate vol.25, pp.4, 2017, https://doi.org/10.12989/scs.2017.25.4.389
  21. A new quasi-3D HSDT for buckling and vibration of FG plate vol.64, pp.6, 2016, https://doi.org/10.12989/sem.2017.64.6.737
  22. An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.693
  23. Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.021
  24. Forced vibration analysis of cracked functionally graded microbeams vol.6, pp.1, 2016, https://doi.org/10.12989/anr.2018.6.1.039
  25. Vibration suppression of a double-beam system by a two-degree-of-freedom mass-spring system vol.21, pp.3, 2016, https://doi.org/10.12989/sss.2018.21.3.349
  26. Analytical solution for scale-dependent static stability analysis of temperature-dependent nanobeams subjected to uniform temperature distributions vol.26, pp.4, 2018, https://doi.org/10.12989/was.2018.26.4.205
  27. A nonlocal strain gradient theory for scale-dependent wave dispersion analysis of rotating nanobeams considering physical field effects vol.7, pp.4, 2016, https://doi.org/10.12989/csm.2018.7.4.373
  28. Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment vol.6, pp.3, 2016, https://doi.org/10.12989/anr.2018.6.3.201
  29. Nonlinear bending and thermal post-buckling behavior of functionally graded piezoelectric nanosize beams using a refined model vol.6, pp.6, 2016, https://doi.org/10.1088/2053-1591/ab0f78
  30. A review of mechanical analyses of rectangular nanobeams and single-, double-, and multi-walled carbon nanotubes using Eringen’s nonlocal elasticity theory vol.89, pp.9, 2016, https://doi.org/10.1007/s00419-019-01542-z
  31. Thermal Effect on Vibration Responses of Double-Layered Graphene Sheet-Based Nanomechanical Resonators Based on Galerkin Strip Transfer Function Method vol.49, pp.5, 2016, https://doi.org/10.1007/s13538-019-00694-1
  32. Theoretical Analysis of Free Vibration of Microbeams under Different Boundary Conditions Using Stress-Driven Nonlocal Integral Model vol.20, pp.3, 2016, https://doi.org/10.1142/s0219455420500406
  33. Stability of Vibrating Functionally Graded Nanoplates with Axial Motion Based on the Nonlocal Strain Gradient Theory vol.20, pp.8, 2020, https://doi.org/10.1142/s0219455420500881
  34. Time harmonic interactions in non local thermoelastic solid with two temperatures vol.74, pp.3, 2016, https://doi.org/10.12989/sem.2020.74.3.341
  35. Deformation in a nonlocal magneto-thermoelastic solid with hall current due to normal force vol.22, pp.2, 2016, https://doi.org/10.12989/gae.2020.22.2.109
  36. Thermomechanical interactions in a non local thermoelastic model with two temperature and memory dependent derivatives vol.9, pp.5, 2020, https://doi.org/10.12989/csm.2020.9.5.397
  37. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2016, https://doi.org/10.12989/scs.2021.38.2.141
  38. Free vibration of bi-directional functionally graded imperfect nanobeams under rotational velocity vol.119, pp.None, 2021, https://doi.org/10.1016/j.ast.2021.107210