• 제목/요약/키워드: sintering mechanism

검색결과 169건 처리시간 0.026초

산화물 소결체에서 전기적 Switching 기구 (Electrical Switching Mechanism of the Sintering Oxides)

  • 조동산;김화택
    • 한국세라믹학회지
    • /
    • 제15권3호
    • /
    • pp.135-139
    • /
    • 1978
  • Sintering oxide which was prepared by sintering at $1200^{\circ}C$ the mixture of ${\gamma}$-$Fe_2O_3$ and $Sb_2O_3$ in 2 : 1 mol ratio, showed 1st electrical switching and stable 2nd switching when D.C. voltage was applied. This electrical switching mechanism was known to be thermal mechanism from dependence of environmental temperature of threshold Voltage(Vm), Current(Im) and the conductivity of the current filament of the sintering oxide.

  • PDF

Effect of Adding Al-Ca Fluoride on Sintering Behavior of Aluminum-Bronze Powder

  • Masuoka, Sachiko;Arami, Yoshiro;Nagai, Shozo
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.276-277
    • /
    • 2006
  • In order to accelerate the sintering of Al-Bronze powder covered with passive oxide film, we focused on the way to add Al-Ca fluoride consisting of $AlF_3$ and $CaF_2$, examined the effect of the $CaF_2$ mixing rate in Al-Ca fluoride, the amount of the added Al-Ca fluoride and the sintering temperature on sintering properties of Al-Bronze powder and considered the mechanism of the sintering acceleration. Al-Bronze powder was sintered most effectively by adding Al-Ca fluoride with the $CaF_2$ mixing rate of 20mass%. If the amount of added fluoride was over 0.05mass% and the sintering temperature was over 1123K, the sintering acceleration of the Al-Bronze powder appears. Regarding the mechanism of the sintering acceleration, it was presumed that $Al_2O_3$ film on the surface of the Al-Bronze particles was removed in the process of the formation of gaseous AlOF by the reaction with $AlF_3$, and the reaction was accelerated further by the presence of the liquid phase which is formed in Al-Ca fluoride.

  • PDF

$RuO_2$계 후막저항체의 전기전도기구 (Electrical Conduction Mechanisms of $RuO_2$ Based Thick Film Resistor)

  • 구본급;김호기
    • 한국세라믹학회지
    • /
    • 제31권12호
    • /
    • pp.1529-1535
    • /
    • 1994
  • Electrical conduction mechanisms of RuO2-based thick film resistors were investigated with frequency depandence on AC conductivity. Electrical conduction mechanisms of lower resistivity system (100{{{{ OMEGA }}/sq) sintered at 600~90$0^{\circ}C$ were all metallic conduction mechanism. In case of higher resistivity (10K{{{{ OMEGA }}/sq) system, the electrical conduction mechanisms were very depenent on sintering temperature. When sintering temperature was $600^{\circ}C$, the electrical conduction mechamism was ionic, and as increasing the sintering temperature, the electrical conduction mechanism was changed from ionic to hopping conduction mechanism.

  • PDF

산화처리된 구형 Fe 분말 성형제의 방전플라즈마 소결거동에 관한 연구 (Densification Behavior of the Oxidation-treated Spherical Fe-powder Compact during Spark-Plasma Sintering Process)

  • 권영순;김윤호;김지순;석명진;문진수;김환태
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.61-69
    • /
    • 2001
  • Spark-Plasma Sintering(SPS) is one of the new sintering methods which takes advantages both inconventional pressure sintering and electric current sintering. It is known that SPS is very effective for the densification of hard-to-sinter materials like refractory metals, intermetallic compounds, glass and ceramics without grain growth. However, a clear explanation for sintering mechanism and an experimental evidence for the formation of weak plasma during SPS are not given yet. In this study, fundamental study on sintering behavior and mechanism of SPS was investiged. For this study, various spherical Fe powders were prepared such as as-received, as-reduced, and as-oxidized and then sintered by SPS facility. In order to confirm the surface cleaning effect during SPS neck region and fracture surface of sintered body was observed and analyzed by SEM/EPMA. Densification behavior was analyzed from the data of deflection along the pressure axis. Some specimens were additionally produced by Hot Pressing and the results were compared with those of SPS.

  • PDF

Solid-state sintering mechanism of blended elemental Ti-6Al-4V powders

  • Kim, Youngmoo;Song, Young-Beom;Lee, Sung Ho
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.109-119
    • /
    • 2018
  • The objective of this study is to reveal the sintering mechanism of mixed Ti-6Al-4V powders considering the densification and the homogenization between Ti and Al/V particles. It is found that the addition of master alloy particles into Ti enhances densification by the migration of Al into the Ti matrix prior to the self-diffusion of Ti. However, as Ti particles become coarser, sintering of the powders appears to be retarded due to slower inter-diffusion of the particles due to the reduced surface energies of Ti. Such phenomena are confirmed by a series of dilatometry tests and microstructural analyses in respect to the sintering temperature. Furthermore, the results are also consistent with the predicted activation energies for sintering. The energies are found to have decreased from 299.35 to $135.48kJ{\cdot}mol^{-1}$ by adding the Al/V particles because the activation energy for the diffusion of Al in ${\alpha}-Ti$ ($77kJ{\cdot}mol^{-1}$) is much lower than that of the self-diffusion of ${\alpha}-Ti$. The coarser Ti powders increase the energies from 135.48 to $181.16kJ{\cdot}mol^{-1}$ because the specific surface areas of Ti decrease.

용융 Si-C-SiC계에서 $\beta$-SiC 생성기구 ($\beta$-SiC Formation Mechanisms in Si Melt-C-SiC System)

  • 서기식;박상환;송휴섭
    • 한국세라믹학회지
    • /
    • 제36권6호
    • /
    • pp.655-661
    • /
    • 1999
  • ${\beta}$-SiC formation mechanism in Si melt-C-SiC system with varying in size of carbon source was investigated. A continuous reaction sintering process using Si melt infiltration method was adopted to control the reaction sintering time effectively. It was found that ${\beta}$-SiC formation mechanism in Si melt-C-SiC system was directly affected by the size of carbon source. In the Si melt-C-SiC system with large carbon source ${\beta}$-SiC formation mechanism could be divided into two stages depending on the reaction sintering time: in early stage of reaction sintering carbon dissolution in Si melt and precipitation of ${\beta}$-SiC was occurred preferentially and then SIC nucleation and growth was controlled by diffusion of carbon throughy the ${\beta}$-SiC layer formed on graphite particle. Furthmore a dissolution rate of graphite particles in Si melt could be accelerated by the infiltration of Si melt through basal plane of graphite crystalline.

  • PDF

Low-temperature Sintering Behavior of TiO2 Activated with CuO

  • Paek, Yeong-Kyeun;Shin, Chang-Keun;Oh, Kyung-Sik;Chung, Tai-Joo;Cho, Hyoung Jin
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.682-688
    • /
    • 2016
  • In $TiO_2$-CuO systems, low-temperature sinterability was investigated by a conventional sintering method. Sintering temperatures were set at under $950^{\circ}C$, at which the volume diffusion is inactive. The temperatures are less than the melting point of Ag ($961^{\circ}C$), which is often used as an internal conductor in low-temperature co-fired ceramic technology. To optimize the amount of CuO dopant, various dopant contents were added. The optimum level for enhanced densification was 2 wt% CuO. Excess dopants were segregated to the grain boundaries. The segregated dopants supplied a high diffusion path, by which grain boundary diffusion improved. At lower temperatures in the solid state region, grain boundary diffusion was the principal mass transport mechanism for densification. The enhanced grain boundary diffusion, therefore, improved densification. In this regard, the results of this study prove that the sintering mechanism was the same as that of activated sintering.

Study on sintering process of woodceramics from the cashew nutshell waste

  • Kieu, Do Trung Kien;Phan, DinhTuan;Okabe, Toshihiro;Do, Quang Minh;Tran, Van Khai
    • Journal of Ceramic Processing Research
    • /
    • 제19권6호
    • /
    • pp.472-478
    • /
    • 2018
  • In this study, the sintering mechanism of woodceramics (WCs) from cashew nut shell waste (CNSW) was studied by analyzing chemical reactions and structural changes during the sintering process of of CNSW powder, liquefied wood and green bodies of WCs at $900^{\circ}C$ for 60 minutes in the $CO_2$ atmosphere. The chemical and structural properties of the products were investigated by X-ray diffraction (XRD), Raman spectroscopy, Fourier Transform Infrared (FTIR), and scanning electron microscope (SEM). The results showed that the decomposition reactions of liquefied wood and CNSW occurred simultaneously to form the hard carbon and the soft carbon at high temperature. The sintering mechanism of WCs has been presented.

Sintering Mixtures in the Stage of Establishing Chemical Equilibrium

  • Savitskii, A.P.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 1999년도 춘계학술대회 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.5-5
    • /
    • 1999
  • The Principal deficiency of the existing notion about the sintering-mixtures consists in the fact that almost no attention is focused on the Phenomenon of alloy formation during sintering, its connection with dimensional changes of powder bodies, and no correct ideas on the driving force for the sintering process in the stage of establishing chemical equilibrium in a system are available as well. Another disadvantage of the classical sintering theory is an erroneous conception on the dissolution mechanism of solid in liquid. The two-particle model widely used in the literature to describe the sintering phenomenon in solid state disregards the nature of the neighbouring surrounding particles, the presence of pores between them, and the rise of so called arch effect. In this presentation, new basic scientific principles of the driving forces for the sintering process of a two-component powder body, of a diffusion mechanism of the interaction between solid and liquid phases, of stresses and deformation arising in the diffusion zone have been developed. The major driving force for sintering the mixture from components capable of forming solid solutions and intermetallic compounds is attributed to the alloy formation rather than the reduction of the free surface area until the chemical equilibrium is achieved in a system. The lecture considers a multiparticle model of the mixed powder-body and the nature of its volume changes during solid-state and liquid-phase sintering. It explains the discovered S-and V-type concentration dependencies of the change in the compact volume during solid-state sintering. It is supposed in the literature that the dissolution of solid in liquid is realised due to the removal of atoms from the surface of the solid phase into the melt and then their diffusicn transfer from the solid-liquid interface into the bulk of liquid. It has been shown in our experimental studies that the mechanism of the interaction between two components, one of them being liquid, consist in diffusion of the solvent atoms from the liquid into the solid phase until the concentration of solid solutions or an intermetallic compound in the surface layer enables them to pass into the liquid by means of melting. The lecture discusses peculimities of liquid phase formation in systems with intermediate compounds and the role of the liquid phase in bringing about the exothermic effect. At the frist stage of liquid phase sintering the diffusion of atoms from the melt into the solid causes the powder body to grow. At the second stage the diminution of particles in size as a result of their dissolution in the liquid draws their centres closer to each other and makes the compact to shrink Analytical equations were derived to describe quantitatively the porosity and volume changes of compacts as a result of alloy formation during liquid phase sinteIing. Selection criteria for an additive, its concentration and the temperature regime of sintering to control the density the structure of sintered alloys are given.

  • PDF

알루미나를 첨가한 코디어라이트계 결정화 유리의 소결거동 및 결정화 특성 (The Sintering Mechanism and Crystallization Characteristics of Alumina-filled Cordierite-type Glass-ceramics)

  • 박정현;노재호;성재석;구기덕
    • 한국세라믹학회지
    • /
    • 제35권7호
    • /
    • pp.706-714
    • /
    • 1998
  • The MgO-{{{{ { {Al }_{2 }O }_{3 } }}-{{{{ { {SiO }_{2 } }_{ } }}system containing alumina powder was fabricated sintered at various temperature and analyzed in order to study the sintering mechanism and crystallization characteristics. The specimen composed of glass powder with average particle size of 8.27 $\mu\textrm{m}$ and 0-40 vol% alumina powder were sint-ered for 3 hrs at the temperature between 850$^{\circ}C$ and 1350$^{\circ}C$ The sintering mechanism consists of the redis-tribution of particles occuring at 750$^{\circ}C$ and the viscous flow at 850∼950$^{\circ}C$. The degree of crystallization and sintering temperatue were dependent upon the ratio of glass/alumina. The second phase from the reaction between glass and alumina was not observed which was confirmed by XRD and properties analysis. The density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm2 5.8∼7.38 at 1 GHz density dielectric constant and specific resistivity of specimen were 2.30∼3.26g/cm3 5.8∼7.38 at 1GHz and 1.23∼4.70${\times}$107 $\Omega$$.$m respectively.

  • PDF