• 제목/요약/키워드: sintered body

검색결과 335건 처리시간 0.024초

Effect of Freezing and Sintering Condition of CuO-SnO2/Camphene Slurries on the Pore Structure of Porous Cu-Sn (CuO-SnO2/camphene 슬러리의 동결 및 소결조건이 Cu-Sn 다공체의 기공구조에 미치는 영향)

  • Kim, Joo-Hyung;Oh, Sung-Tag;Hyun, Chang-Yong
    • Journal of Powder Materials
    • /
    • 제23권1호
    • /
    • pp.49-53
    • /
    • 2016
  • The present study demonstrates the effect of freezing conditions on the pore structure of porous Cu-10 wt.% Sn prepared by freeze drying of $CuO-SnO_2$/camphene slurry. Mixtures of CuO and $SnO_2$ powders are prepared by ball milling for 10 h. Camphene slurries with 10 vol.% of $CuO-SnO_2$ are unidirectionally frozen in a mold maintained at a temperature of $-30^{\circ}C$ for 1 and 24 h, respectively. Pores are generated by the sublimation of camphene at room temperature. After hydrogen reduction and sintering at $650^{\circ}C$ for 2 h, the green body of the $CuO-SnO_2$ is completely converted into porous Cu-Sn alloy. Microstructural observation reveals that the sintered samples have large pores which are aligned parallel to the camphene growth direction. The size of the large pores increases from 150 to $300{\mu}m$ with an increase in the holding time. Also, the internal walls of the large pores contain relatively small pores whose size increases with the holding time. The change in pore structure is explained by the growth behavior of the camphene crystals and rearrangement of the solid particles during the freezing process.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 한국분말야금학회 1997년도 추계학술강연 및 발표대회 강연 및 발표논문 초록집
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

$SnO_2$ Dispersion of Sintered Body in $In_2O_3-SnO_2$ Binary System ($In_2O_3-SnO_2$ 이성분계 소결특성에 있어서 $SnO_2$ 분산성)

  • Chun, Tae-Jin;Park, Wan-Soo;Cho, Muyung-Jin;Kim, Jong-Su;Kim, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.198-198
    • /
    • 2006
  • Tin doped $In_2O_3$ sputtering target is widely used to produce a various kinds of flat panel display because of high transmittance in visible region and high electrical conductivity. In2O3 and SnO2 powders were prepared by a homogeneous precipitation method using metal source, respectively, the calcining and sintering behavior of the indium-tin oxide(In2O3-SnO2) composite powders were studied. The tin oxide(SnO2) dispersion condition in ITO sputtering target was improved by increasing calcining temperature. And the tin oxide dispersion was also improved by reducing the tin oxide contents in the ITO target from 30 to 5wt%. SnO2 dispersion and densification of ITO target is very difficult to control due to sublimation of SnO2 at over 1150C.

  • PDF

Effect of Cr2O3-MgO-Y2O3 Addition on Mechanical Properties of Mullite Ceramics (Cr2O3-MgO-Y2O3 첨가에 따른 뮬라이트 세라믹스의 기계적 성질)

  • Lim, Jin-Hyeon;Kim, Shi Yeon;Yeo, Dong-Hun;Shin, Hyo-Soon;Jeong, Dae-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제30권12호
    • /
    • pp.762-767
    • /
    • 2017
  • Mullite ($3Al_2O_3{\cdot}2SiO_2$) has emerged as a promising candidate for high-temperature structural materials due to its erosion resistance, chemical and thermal stabilities, relatively low thermal expansion coefficient, excellent thermal shock and creep resistances, and low dielectric constant. However, since the pure mullite sintering temperature is as high as $1,600{\sim}1,700^{\circ}C$, there is an increasing need for a sintering additive capable of improving the strength characteristics while lowering the sintering temperature. Herein we have tried to obtain the optimal sintering additive composition by adding MgO, $Cr_2O_3$, and $Y_2O_3$ to mullite, followed by sintering at $1,325{\sim}1,550^{\circ}C$ for 2 h. With additives of 2 wt% of MgO, 2 wt% of $Cr_2O_3$, 4 wt% of $Y_2O_3$, A density of $3.23g/cm^3$ was obtained for the sintered body at $1,350^{\circ}C$ upon using 2 wt% MgO, 2 wt% $Cr_2O_3$, and 4 wt% $Y_2O_3$ as additives. The three-point flexural strength of that was 275 MPa and the coefficient of thermal expansion (CTE) was $4.15ppm/^{\circ}C$.

Mechanical Properties of Synthesized Nano Laminating $Ti_3SiC_2$ by Reaction Press Sintering (반응 가압 소결 방법으로 합성된 nano laminating $Ti_3SiC_2$의 기계적 특성)

  • 황성식;박상환;김찬묵
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.396-400
    • /
    • 2003
  • A new synthesis process for nano laminating Ti$_3$SiC$_2$ has been developed using TiCx (x=0.67) and Si powder as starting materials by a reaction hot pressing. Bulk Ti$_3$SiC$_2$ was fabricated using a green body consisting of TiCx and Si by a hot pressing under the pressures of 25 MPa at 1420-1550 $^{\circ}C$ for 90 min. The synthesized Ti$_3$SiC$_2$ was consisting of only TiCx and Ti$_3$SiC$_2$. The relative density of sintered bulk Ti$_3$SiC$_2$ was increased as the hot pressing temperature was increased, which was mainly due to the increase in TiCx contents in synthesized Ti$_3$SiC$_2$. The synthesized Ti$_3$SiC$_2$ bulk was consisted of nano sized lamella structure of 20-100 nm in thickness. It was found that TiCx particles in Ti$_3$SiC$_2$ would increase the 3-point bending strength of synthesized Ti$_3$SiC$_2$ bulk. The maximum 3-P. bending strength of synthesized Ti$_3$SiC$_2$ bulk was more than 800 MPa. The Vickers hardness of synthesized Ti$_3$SiC$_2$bulk was as low as 5 Gpa, which was decreased with the indentation load. The quasi-plastic deformation behaviors were observed around indentation mark on Ti$_3$SiC$_2$.

  • PDF

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro;Nakasumi, Shogo;Tezuka, Akira;Fukushima, Manabu;Yoshizawa, Yu-Ichi
    • Interaction and multiscale mechanics
    • /
    • 제2권1호
    • /
    • pp.45-68
    • /
    • 2009
  • An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

Studies of Valve Lifter for Automotive Heavy Duty Diesel Engine by Ceramic Materials I. Developmet of Ceramic-Metal Joint by Brazing Method (Ceramic 재질을 이용한 자동차용 대형 디젤 엔진 Valve Lifter 연구 I. Brazing Process에 의한 Ceramic-Metal 접합체 개발)

  • 윤호욱;한인섭;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • 제35권2호
    • /
    • pp.163-171
    • /
    • 1998
  • Continuously contacting with camshaft the face of Valve Lifter made of cast iron brings about abnormal wear such as unfairwear or earlywear because it is heavily loaded in the valve train systems as the engine gets more powered. This abnormal wear becomes a defet namely over-clearance when the valve is lifting so that the fuel gas imperfectly combusted by unsuitable open or close aaction of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major cause of air pollution and combustion chamber. The imperfectly combusted by unsuitable open or close action of the engine valve in the combustion chamber. The imperfect combustion in the end results in the major causes of air pollution and decrease of the engine output. Consequently to prevent this wear this study was to develop the valve lifter which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened which is joined by brazing process with SCM435H and a tip by manufacturing the face as a superhardened ceramics alloy which has high wear resistance. Having the excellent surface hardness with Hv1100-1200 the sintered body developed with superhardened alloy(WC) can endure the severe face loading in the valve train system. We experienced with various brazing alloys and obtained the excellent joining strength to the joint had 150MPa shear strength. Interface analysis and microstructure in a joint were examined through SEM & EDS Optical microscope. Also 2,500 hours high speed(3,000-4,000 rpm) and continuous (1step 12hr) engine dynamo testing was carried out to casting valve liter and ceramics-metal joint valve lifter so that the abnormal wears were compared and evaluated.

  • PDF

Thermoelectric Properties in the Cu Doping Effects of the n-type Bi-Te Powders (Bi-Te계 n형 열전분말의 열전특성에 미치는 Cu 도핑의 영향)

  • Park, Min Soo;Koo, Hye Young;Ha, Gook Hyun;Park, Yong Ho
    • Journal of Powder Materials
    • /
    • 제22권4호
    • /
    • pp.254-259
    • /
    • 2015
  • $Bi_2Te_3$ related compounds show the best thermoelectric properties at room temperature. However, n-type $Bi_2Te_{2.7}Se_{0.3}$ showed no improvement on ZT values. To improve the thermolectric propterties of n-type $Bi_2Te_{2.7}Se_{0.3}$, this research has Cu-doped n-type powder. This study focused on effects of Cu-doping method on the thermoelectric properties of n-type materials, and evaluated the comparison between the Cu chemical and mechanical doping. The synthesized powder was manufactured by the spark plasma sintering(SPS). The thermoelectric properties of the sintered body were evaluated by measuring their Seebeck coefficient, electrical resistivity, thermal conductivity, and hall coefficient. An introduction of a small amount of Cu reduced the thermal conductivity and improved the electrical properties with Seebeck coefficient. The authors provided the optimal concentration of $Cu_{0.1}Bi_{1.99}Se_{0.3}Te_{2.7}$. A figure of merit (ZT) value of 1.22 was obtained for $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu chemical doping, which was obviously higher than those of $Cu_{0.1}Bi_{1.9}Se_{0.3}Te_{2.7}$ at 373K by Cu mechanical doping (ZT=0.56) and Cu-free $Bi_2Se_{0.3}Te_{2.7}$ (ZT=0.51).

Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics (반응소결 탄화규소 세라믹스의 열물성과 기계적 특성에 미치는 SiC 크기의 영향)

  • Kwon, Chang-Sup;Oh, Yoon-Suk;Lee, Sung-Min;Han, Yoonsoo;Shin, Hyun-Ick;Kim, Youngseok;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • 제21권6호
    • /
    • pp.467-472
    • /
    • 2014
  • RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.

A Synthesis of $(Ba_{1-x}Sr_x)TiO_3$ Powders by Sol-Gel Route (졸-겔법을 이용한$(Ba_{1-x}Sr_x)TiO_3$분말합성)

  • Kim, Young-Seok;Kim, Duk-Jun;Kim, Hwan
    • Korean Journal of Materials Research
    • /
    • 제2권2호
    • /
    • pp.151-156
    • /
    • 1992
  • Using $Ba(OH)_2{\cdot}8H_2O, \;Sr(OH)_2{\cdot}8H_2O$ and $Ti(i-OC_3H_7)_4$, fine $(Ba_{1-x}, \;Sr_{x})TiO_3$ powders were synthesized through sol-gel process. The particle size of the powders calcined at $700^{\cric}C$ proved to be 20-40nm by the observation of TEM micrographs and measurement of BET specific surface area. The analysis of XRD patterns showed that the phase of the powders was cubic, and it was identified with the lattice parameters determined through XRD patterns and the shift of (112) peaks that the solid solution powders were synthesized. It was expected through the analysis of relative ratio of cations and the uniformity of compositions in the powders examined by EDAX analysis and relative dielectric constant measurements for sintered body that the distribution of cations was uniform in particle unit.

  • PDF