DOI QR코드

DOI QR Code

Effect of the SiC Size on the Thermal and Mechanical Properties of Reaction-bonded Silicon Carbide Ceramics

반응소결 탄화규소 세라믹스의 열물성과 기계적 특성에 미치는 SiC 크기의 영향

  • Kwon, Chang-Sup (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Oh, Yoon-Suk (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Yoonsoo (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Hyun-Ick (Inocera Inc.) ;
  • Kim, Youngseok (Inocera Inc.) ;
  • Kim, Seongwon (Engineering Ceramic Team, Korea Institute of Ceramic Engineering and Technology)
  • 권창섭 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 오윤석 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 이성민 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 한윤수 (한국세라믹기술원 이천분원 엔지니어링세라믹팀) ;
  • 신현익 ((주)이노쎄라) ;
  • 김영석 ((주)이노쎄라) ;
  • 김성원 (한국세라믹기술원 이천분원 엔지니어링세라믹팀)
  • Received : 2014.11.20
  • Accepted : 2014.12.12
  • Published : 2014.12.28

Abstract

RBSC (reaction-bonded silicon carbide) represents a family of composite ceramics processed by infiltrating with molten silicon into a skeleton of SiC particles and carbon in order to fabricate a fully dense body of silicon carbide. RBSC has been commercially used and widely studied for many years, because of its advantages, such as relatively low temperature for fabrication and easier to form components with near-net-shape and high relative density, compared with other sintering methods. In this study, RBSC was fabricated with different size of SiC in the raw material. Microstructure, thermal and mechanical properties were characterized with the reaction-sintered samples in order to examine the effect of SiC size on the thermal and mechanical properties of RBSC ceramics. Especially, phase volume fraction of each component phase, such as Si, SiC, and C, was evaluated by using an image analyzer. The relationship between microstructures and physical properties was also discussed.

Keywords

References

  1. K. Schwetz: Silicon Carbide Based Hard Materials, R. Riedel (Ed.), Wiley-VCH, New York (2000) 683.
  2. F. L. Riley: Structural Ceramics-Fundamentals and Case Studies, Cambridge, United Kingdom (2009) 175.
  3. H.-S. Park, M.-H. Ryoo and S.-H. Hong: J. Korean Powder Metall. Inst., 16 (2009) 416 (Korean). https://doi.org/10.4150/KPMI.2009.16.6.416
  4. S. Kim, C.-S. Kwon, Y.-S. Oh, S.-M. Lee and H.-T. Kim: J. Korean Powder Metall. Inst., 19 (2012) 379 (Korean). https://doi.org/10.4150/KPMI.2012.19.5.379
  5. A. Sommers, Q. Wang, X. Han, C. T'Joen, Y. Park and A. Jacobi: Appl. Therm. Eng., 30 (2010) 1277. https://doi.org/10.1016/j.applthermaleng.2010.02.018
  6. Y. Zhou, K. Hirao, K. Watari, Y. Yamauchi and S. Kanzaki: J. Euro. Ceram. Soc., 24 (2004) 265. https://doi.org/10.1016/S0955-2219(03)00236-X
  7. B. K. Jang and Y. Sakka: J. Alloys and Compd., 463 (2008) 493. https://doi.org/10.1016/j.jallcom.2007.09.055
  8. R. M. German: J. Korean Powder Metall. Inst., 20 (2013) 85. https://doi.org/10.4150/KPMI.2013.20.2.085
  9. A. Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero and M. Singh: Int. J. Appl. Ceram. Technol., 1 (2004) 56.
  10. I.-H. Song, I.-M. Kwon, H.-D. Kim and Y.-W. Kim: J. Euro. Ceram. Soc., 30 (2010) 2671. https://doi.org/10.1016/j.jeurceramsoc.2010.04.027
  11. G. Sawyer and T. Page: J. Mater. Sci., 13 (1978) 885. https://doi.org/10.1007/BF00570528
  12. L. Hozer, J.-R. Lee and Y.-M. Chiang: Mater. Sci. & Eng. A, 195 (1995) 131. https://doi.org/10.1016/0921-5093(94)06512-8
  13. S. Aroati, M. Cafri, H. Dilman, M. Dariel and N. Frage: J. Euro. Ceram. Soc., 31 (2011) 841. https://doi.org/10.1016/j.jeurceramsoc.2010.11.032
  14. S. Li, Y. Zhang, J. Han and Y. Zhou: J. Euro. Ceram. Soc., 33 (2013) 887. https://doi.org/10.1016/j.jeurceramsoc.2012.10.026
  15. H. Xia, J. Wang, J. Lin, G. Liu and G. Qiao: Mater. Charact., 82 (2013) 1. https://doi.org/10.1016/j.matchar.2013.04.011
  16. U. Paik, H.-C. Park, S.-C. Choi, C.-G. Ha, J.-W. Kim and Y.-G. Jung: Mater. Sci. Eng. A, 334 (2002) 267. https://doi.org/10.1016/S0921-5093(01)01897-4
  17. Z.-Z. Yi, Z.-P. Xie, Y. Huang, J.-T. Ma and Y.-B. Cheng: Ceram. Int., 28 (2002) 369. https://doi.org/10.1016/S0272-8842(01)00104-3
  18. Y. Li, J. Lin, J. Gao, G. Qiao and H. Wang: Mater. Sci. Eng. A, 483 (2008) 676.
  19. Z. Luo, D. Jiang, J. Zhang, Q. Lin, Z. Chen and Z. Huang: Ceram. Int., 38 (2012) 2125. https://doi.org/10.1016/j.ceramint.2011.10.053
  20. ImageJ, http://rsb.info.nih.gov/ij/.
  21. E. Ervin: Quantitative Metallography, G. Vander Voort and H. James (Ed.), ASM International, OH, (2004) 187.
  22. G. Srivastava: Lattice Thermal Conduction Mechanism in Solids, S. L. Shinde and J. S. Goela (Ed.), Springer, New York (2006) 1.
  23. J. B. Wachtman, W. R. Cannon and M. J. Matthewson: Mechanical Properties of Ceramics, John Wiley & Sons, New York (2009) 212.

Cited by

  1. Mechanical Strength Values of Reaction-Bonded-Silicon-Carbide Tubes with Different Sample Size vol.24, pp.6, 2017, https://doi.org/10.4150/KPMI.2017.24.6.450