• Title/Summary/Keyword: sinterability

Search Result 235, Processing Time 0.022 seconds

Effect of B4C Content on the Sintering Characteristics of 6061Al-B4C Composite Powder (B4C 함량에 따른 6061 Al-B4C 복합분말의 소결 특성 연구)

  • Park, Jin-Ju;Hong, Sung-Mo;Kim, Kyoung-Yeol;Lee, Min-Ku;Rhee, Chang-Kyu;Rhee, Won-Hyuk;Lee, Yang Kyu
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • In the present work, 6061 Al-$B_4C$ sintered composites containing different $B_4C$ contents were fabricated and their characteristic were investigated as a function of sintering temperature. For this, composite powders and their compacts with $B_4C$ various contents from 0 to 40 wt.% were fabricated using a planetary ball milling equipment and cold isostatic pressing, respectively, and then they were sintered in the temperature ranges of 580 to $660^{\circ}C$. Above sintering temperature of $640^{\circ}C$, real density was decreased due to the occurrence of sweat phenomena. In addition, it was realized that sinterability of 6061Al-$B_4C$ composite material was lowered with increasing $B_4C$ content, resulting in the decrease in its real density and at the same time in the increment of porosity.

La0.8Ca0.2CrO3 Interconnect Materials for Solid Oxide Fuel Cells: Combustion Synthesis and Reduced-Temperature Sintering

  • Park, Beom-Kyeong;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • Sub-micrometer $La_{0.8}Ca_{0.2}CrO_3$ powders for ceramic interconnects of solid oxide fuel cells were synthesized by the aqueous combustion process. The materials were prepared from the precursor solutions with different glycine (fuel)-to-nitrate (oxidant) ratios (${\phi}$). Single-phase $La_{0.8}Ca_{0.2}CrO_3$ powders with a perovskite structure were obtained after combustion when ${\phi}$ was equal to or larger than 0.480. Especially, the stoichiometric precursor with ${\phi}$ = 0.555 yielded the spherical $La_{0.8}Ca_{0.2}CrO_3$ particles with 150-250 nm diameters after calcination at $1000^{\circ}C$. When compared with the powders synthesized by the solid-state reaction, the combustion-derived, fine powders exhibited improved sinterability, leading to near-full densification at $1400^{\circ}C$ in oxidizing atmospheres. Moreover, a small quantity of glass additives was used to reduce the sintering temperature, and considerable densification was indeed achieved at temperatures as low as $1100^{\circ}C$.

Preparation of NiO Coated YSZ Powder for Fabrication of an SOFC Anode (SOFC 음극 제조를 위한 NiO가 코팅된 YSZ 분말의 합성)

  • Lim, Kwang-Young;Han, In-Dong;Sim, Soo-Man;Park, Jun-Young;Lee, Hae-Won;Kim, Joo-Sun
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.781-787
    • /
    • 2006
  • NiO-coated YSZ powder was prepared using heterogeneous precipitation of Ni hydroxides on YSZ particle surface and high energy milling. The powders were characterized by TG/DTA, XRD, XPS, and SEM. Amorphous Ni precipitate completely decomposed into NiO at $500^{\circ}C$ and the growth of NiO crystallites was constrained by the core particles. Nanocrystalline NiO-coated YSZ core-shell structure powder could be obtained after calcination at $800^{\circ}C$ for 2 h. A core-shell powder compact, due to high sinterability, showed a near theoretical density at $1350^{\circ}C$. After reduction at $900^{\circ}C$, interpenetrating Ni-YSZ microstructure with very uniformly distributed fine Ni and YSZ grains and pores was observed. In contrast, the mechanically mixed oxide sample showed less uniform distribution of pores and larger discontinuous We particles as compared with the core-shell samples.

The Microwave Dielectric Properties of $ZnNb_2O_{6}$ Ceramics with Sintering Temperature and CuO Addition (소결온도와 CuO 첨가에 따른 $ZnNb_2O_{6}$ 세라믹스의 마이크로파 유전특성)

  • 김정훈;김지헌;배선기;이성갑;이영희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.7
    • /
    • pp.347-351
    • /
    • 2004
  • The $ZnNb_2O_{6}$ ceramics with CuO(1, 3, 5wt%) were prepared by the conventional mixed oxide method. The ceramics were sintered at the temperature of $950^{\circ}C$$1075^{\circ}C$ for 3hr in air The structural properties and the microwave dielectric properties of $ZnNb_2O_{6}$ ceramics were investigated with sintering temperature and the addition of CuO. Increasing the addition of CuO, the peak of second phase($Cu_3Nb_2O_{8}$) was increased. The grain size of the $ZnNb_2O_{6}$ ceramics with CuO was increased with CuO addition at same temperature. The dielectric constant of $ZnNb_2O_{6}$ ceramics with CuO was increased with sintering temperature and CuO addition. While the quality factor of the $ZnNb_2O_{6}$ ceramics with lwt% CuO depended on sinterability, the quality factor of $ZnNb_2O_{6}$ with 3wt% and 5wt% CuO depended on second Phase due to the CuO addition. The optimum dielectric Properties of $\varepsilon$$_{r}$ = 21.73 Q${\times}$f = 19,276 were obtained from the condition of 3wt% CuO addition and sintering temperature of $1025^{\circ}C$(3hr).

Microwave Dielectric Properties of Ca(Li1/4Nb3/4)O3-CaTiO3 Ceramics added with Zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 Ca(Li1/4Nb3/4)O3-CaTiO3 세라믹스의 마이크로파 유전 특성)

  • Yoon Sang-Ok;Kim Kwan-Soo;Jo Tae-Hyun;Shim Sang-Heung;Park Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.524-530
    • /
    • 2006
  • $xCa(Li_{1/4}Nb_{3/4})O_{3}-(1-x)CaTiO_{3}$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to low-temperature co-fired ceramic(LTCC) technology. The addition of $5{\sim}15wt%$ ZBS glass ensured successful sintering below $900\;^{\circ}C$. In general, increased addition of ZBS glass increased sinterability but it decreased the quality factor($Q{\times}f_{0}$) significantly due to the formation of an excessive liquid and second phases. As for the addition of $CaTiO_3$, the dielectric constant(${\epsilon}_r$) and temperature coefficient of resonant frequency(${\tau}_f$) increased, while the quality factor($Q{\times}f_{0}$) did not show an apparent change. The sintered $0.9Ca(Li_{1/4}Nb_{3/4})O_{3}-0.1CaTiO_{3}$ specimen at $900\;^{\circ}C$ with 10 wt% ZBS glass demonstrated 39.6 in dielectric constant(${\epsilon}_r$), 4,400 in quality factor$(Q{\times}f_{0}),\;and\;-11ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

Study on the Sinterability of Silicon Substituted Hydroxyapatite (Si 치환 Hydroxyapatite의 소결 특성에 관한 연구)

  • Lee, Yoon-Joo;Kim, Young-Hee;Kim, Soo-Ryong;Jung, Sang-Jin;Riu, Do-Hyung;Song, Hee;Jun, Moo-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1096-1101
    • /
    • 2003
  • Si -substituted hydroxyapatite has been prepared to obtain biomaterials having an improved biocompatibility. From FT-IR, XRD, and ICP analyses, it was confirmed that the single-phase of hydroxyapatite substituted by Si has formed. Si- substituted hydroxyapatite of up to 2 wt% for Si keeps its original structures intact for the sintering temperatures of up to 1200$^{\circ}C$. However, it is observed that the ion substitutions by the amount higher than the above ratios for the hydroxyapatite leads to destabilize original structures of the hydroxyapatite and to produce tricalcium phosphate and calcium phosphate silicate phases when the samples were sintered at 1l00$^{\circ}C$ or higher.

Observation of Thermal Conductivity of Pressureless Sintered AlN Ceramics under Control of Y2O3 Content and Sintering Condition (Y2O3 함량과 소결조건에 따른 상압소결 AlN 세라믹스의 열전도도 고찰)

  • Na, Sang-Moon;Go, Shin-Il;Lee, Sang-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.5
    • /
    • pp.368-372
    • /
    • 2011
  • Aluminum nitride (AlN) has excellent thermal conductivity, whereas it has some disadvantage such as low sinterability. In this study, the effects of sintering additive content and sintering condition on thermal conductivity of pressureless sintered AlN ceramics were examined on the variables of 1~3 wt% sintering additive ($Y_2O_3$) content at $1900^{\circ}C$ in $N_2$ atmosphere with holding time of 2~10 h. All AlN specimens showed higher thermal conductivity as the $Y_2O_3$ content and holding time increase. The formation of secondary phases (yttrium aluminates) by reaction of $Y_2O_3$ and $Al_2O_3$ from AlN surface promoted the thermal conductivity of AlN specimens, because the secondary phases could reduce the oxygen contents in AlN lattice. Also, thermal conductivity was increased by long sintering time because of the uniform distribution and the elimination of the secondary phases at the grain boundary by the evaporation effect during long holding time. A carbothermal reduction reaction was also affected on the thermal conductivity. The thermal conductivity of AlN specimens sintered at $1900^{\circ}C$ for 10 h showed 130~200W/mK according to the content of sintering additive.

Piezoelectric and Dielectric Properties of 0.97[(K0.5Na0.5)(Nb0.97Sb0.03)O3]-0.03[(Bi0.5K0.5)TiO3] Ceramics Modified with K5.4Cu1.3Ta10O29 (K5.4Cu1.3Ta10O29 첨가에 따른 0.97[(K0.5Na0.5)(Nb0.97Sb0.03)O3]-0.03[(Bi0.5K0.5)TiO3] 세라믹스의 압전 및 유전 특성)

  • Lee, Kab-Soo;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.9
    • /
    • pp.728-732
    • /
    • 2011
  • In this study, piezoelectric and dielectric properties of Lead-free $0.97[(K_{0.5}Na_{0.5})(Nb_{0.97}Sb_{0.03})O_3]+0.03[(Bi_{0.5}K_{0.5})TiO_3]$ (abbreviated as 0.97NKNS-0.03BKT)ceramics synthesized by conventional solid-state reaction process were investigated as a function of $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition. The results indicated that the $K_{5.4}Cu_{1.3}Ta_{10}O_{29}$ addition significantly improved the sinterability, grain growth and piezoelctric properties of 0.97NKNS-0.03BKT ceramics. The optimum values as planar piezoelectric coupling coefficient ($k_p$= 0.355), piezoelectric constant ($d_{33}$= 207 pC/N) and mechanical quality factor ($Q_m$= 128) were obtained when 0.009KCT was added. The electromechanical coupling factor($k_p$) was slightly decreased according to the increasing temperature.

Densification and Microstructure of Ultrafine-sized AlN Powder Prepared by a High Energy Ball Milling Process (고에너지 볼밀링 방법에 의해 얻어진 초미립 AlN 분말의 치밀화 및 미세구조)

  • Park, Hae-Ryong;Kim, Young-Do;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • In this study, a high energy ball milling process was employed in order to improve the densification of direct nitrided AlN powder. The densification behavior and the sintered microstructure of the milled AlN powder were investigated. Mixture of AlN powder doped with 5 wt.% $Y_2O_3$ as a sintering additive was pulverized and dispersed up to 50 min in a bead mill with very small $ZrO_2$ beads. Ultrafine AlN powder with a particle size of 600 nm and a specific surface area of 9.54 $m^2/g$ was prepared after milling for 50 min. The milled powders were pressureless-sintered at $1700^{\circ}C-1800^{\circ}C$ for 4 h under $N_2$ atmosphere. This powder showed excellent sinterability leading to full densification after sintering at $1700^{\circ}C$ for 4 h. However, the sintered microstructure revealed that the fraction of yitttium aluminate increased with milling time and sintering temperature and the newly-secondary phase of ZrN was observed due to the reaction of AlN with the $ZrO_2$ impurity.

Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics ($1-xBiNbO_4-xZnNb_2O_6$ 세라믹스의 저온소결 및 유전특성)

  • Kim, Yun-Han;Yoon, Sang-Ok;Kim, Kwan-Soo;Lee, Joo-Sik;Kim, Kyung-Mi;Park, Jong-Guk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.260-260
    • /
    • 2007
  • Low-temperature sintering and dielectric properties of the $1-xBiNbO_4-xZnNb_2O_6$ ceramics (x=0.3, 0.5, and 0.7) with 10 wt% zinc borosilicate (ZBS) glass was investigated as a function of the substitution of $ZnNb_2O_6$ with a view to applying this system to LTCC technology. The all composition addition of 10 wt% ZBS glass ensured a successful sintering below $900^{\circ}C$. The the amount of $ZnNb_2O_6$ on $ZnNb_2O_6$ ceramics increased the $Q{\times}f$ values, but it decreased the sinterability and dielectric constant due to the higher $Q{\times}f$ value and sintering temperature of $ZnNb_2O_6$ than that of $ZnNb_2O_6$ ceramics. The increase of $ZnNb_2O_6$ content from 0.3 to 0.7 in the $1-xBiNbO_4-xZnNb_2O_6$ ceramics with 10 wt% ZBS glass sintered at $900^{\circ}C$ demonstrated 30~20 in the dielectric constant (${\varepsilon}_r$), 3,500~4,500 GHz in the $Q{\times}f$ value.

  • PDF