DOI QR코드

DOI QR Code

Study on the Sinterability of Silicon Substituted Hydroxyapatite

Si 치환 Hydroxyapatite의 소결 특성에 관한 연구

  • Lee, Yoon-Joo (Ceramics Building Materials Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Hee (Ceramics Building Materials Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo-Ryong (Ceramics Building Materials Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung, Sang-Jin (Ceramics Building Materials Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Riu, Do-Hyung (Nano Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Song, Hee (Ceramics Building Materials Department, Korea Institute of Ceramic Engineering and Technology) ;
  • Jun, Moo-Jin (Chemistry Department, Yonsei University)
  • 이윤주 (요업기술원 세라믹.건재본부) ;
  • 김영희 (요업기술원 세라믹.건재본부) ;
  • 김수룡 (요업기술원 세라믹.건재본부) ;
  • 정상진 (요업기술원 세라믹.건재본부) ;
  • 류도형 (요업기술원 나노소재응용본부) ;
  • 송희 (요업기술원 세라믹.건재본부) ;
  • 전무진 (연세대학교 화학과)
  • Published : 2003.11.01

Abstract

Si -substituted hydroxyapatite has been prepared to obtain biomaterials having an improved biocompatibility. From FT-IR, XRD, and ICP analyses, it was confirmed that the single-phase of hydroxyapatite substituted by Si has formed. Si- substituted hydroxyapatite of up to 2 wt% for Si keeps its original structures intact for the sintering temperatures of up to 1200$^{\circ}C$. However, it is observed that the ion substitutions by the amount higher than the above ratios for the hydroxyapatite leads to destabilize original structures of the hydroxyapatite and to produce tricalcium phosphate and calcium phosphate silicate phases when the samples were sintered at 1l00$^{\circ}C$ or higher.

생체친화성이 증진된 생체재료를 얻기 위하여 실리콘 원료로 tetraethyl orthosilicate를 사용하여 실리콘이 치환된 hydroxyapatite를 합성하였으며 FT-IR, XRD, 그리고 ICP 분석결과로부터 실리콘이 hydroxyapatite 구조내에 치환되어 있음을 확인하였다. 성분분석 결과 2 wt%까지의 실리콘을 함유하는 hydroxyapatite인 경우는 120$0^{\circ}C$에서 소결 후에도 원래의 hydroxyapatite 구조를 잘 유지하고 있는 것이 XRD와 HRTEM으로 확인되었으나 그 이상의 실리콘을 함유하는 hydroxyapatite인 경우는 110$0^{\circ}C$에서 부터 상분리가 일어나 XRD에서 tricalcium phosphate와 calcium phosphate silicate상이 검출되기 시작하였다.

Keywords

References

  1. J. Am. Ceram. Soc. v.81 no.7 Bioceramics L.L.Hench https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  2. J. Mater. Sci.; Mater. In Med. v.11 no.8 Morphological Study of Hydroxyapatite Nanocrystal Suspension E.Bouyer;F.Gitzhofer;M.I.Boulos https://doi.org/10.1023/A:1008918110156
  3. J. Eur. Ceram. Soc. v.17 no.9 A New Synthesis of Hydroxyapatite W.Weng;J.L.Baptista https://doi.org/10.1016/S0955-2219(96)00215-4
  4. J. Biomed. Mater. Res. v.44 no.4 Chemical Characterization of Silicon-substituted Hydroxyapatite I.R.Gibson;S.M.Best;W.Bonfield https://doi.org/10.1002/(SICI)1097-4636(19990315)44:4<422::AID-JBM8>3.0.CO;2-#
  5. J. Biomed. Mater. Res. v.42 no.4 Influence of Magnesium Substituted on a Collagen-apatite Biomaterial on the Production of a Calcifying Matrix by Human Osteoblasts C.M.Serre;M.Pahillard;P.Chavassieux;J.C.Voegel;G.Boivin https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<626::AID-JBM20>3.0.CO;2-S
  6. WO 98-08773 Silicon-substituted Apatites and Process for the Preparation Thereof S.M.Best;W.Bonfield;I.R.Gibson;L.J.Jha
  7. Bioceramics v.7 Dependence of Bone Like Hydroxy-apatite Formation on Structure of Silica Gel T.Kokubo;S.B.Cho;K.Nakanishi;C.Ohtsuki;T.Kitsugi;T.Yamamuro;T.Nakamura
  8. J. Am. Ceram. Soc. v.82 no.8 Mechanism of Apatite Formation on a Sodium Glass in a Simulated Body Fluid S.Hayakawa;K.Tsuru;C.Ohtsuki;A.Osaka https://doi.org/10.1111/j.1151-2916.1999.tb02056.x
  9. Science v.167 Silicon; a Possible Factor in Bone Calcification E.M.Carlisle https://doi.org/10.1126/science.167.3916.279
  10. J. Solid State Chem. v.78 Synthesis and Thermal Behavior of Well-crystallized Calcium-deficent Phosphate Apatite A.Mortier;J.Lemaitre;L.Rodrique;P.G.Rouxhet https://doi.org/10.1016/0022-4596(89)90099-6
  11. J. Phys. Chem. v.75 The nature of Deficiency in Nonstoichiometric Hydroxyapatite. Ⅱ. Spectroscopic Studies of Calcium and Strontium Hydroxyapatites S.J.Joris;C.H.Amberg https://doi.org/10.1021/j100689a025
  12. J. Aust. Ceram. Soc. v.29 no.1;2 Silicon-doped Hydroxyapatite A.J.Ruys
  13. Key Eng. Mater. v.192-195 Synthesis and Characterization of Silicon-substitued Hydroxyapatite P.A.A.P.Marques;M.C.F.Magalhaes;R.N.Correia;M.Vallet-Regi https://doi.org/10.4028/www.scientific.net/KEM.192-195.247
  14. Acta. Crys. v.B25 Effective Ionic Radii in Oxides and Fluorides R.D.Shannon;C.T.Prewitt
  15. Nature v.204 Crystal Structure of Hydroxyapatite M.I.Kay;R.A.Young;A.S.Posner https://doi.org/10.1038/2041050a0
  16. Biomaterials v.24 no.11 Synthesis of Si, Mg Substituted Hydroxyapatites and their Sintering Behaviors S.R.Kim;J.H.Lee;Y.T.Kim;D.H.Riu;S.J.Jung;Y.J.Lee;S.C.Chung;Y.J.Lee;S.C.Chung;Y.H.Kim https://doi.org/10.1016/S0142-9612(02)00523-9
  17. J. Kor. Cera. Soc. v.38 Synthesis and Characterization of Silicon Substituted Hydroxyapatite S.R.Kim;Y.H.Kim;S.J.Jung;D.H.Riu
  18. J. Am. Ceram. Soc. v.85 no.11 Effect of Silicon Substitution on the Sintering and Microstructure of Hydroxyapatite R.I.Gibson;S.M.Best;W.Bonfield https://doi.org/10.1111/j.1151-2916.2002.tb00527.x
  19. J. Mater. Sci.: Mater. Med. v.13 no.12 A Comparative Study on the in vivo Behavior of Hydroxyapatite and Silicon Substituted Hydroxyapatite Granules N.Patel;S.M.Best;W.Bonfield;I.R.Gibson;K.A.Hing;E.Damien;P.A.Revell https://doi.org/10.1023/A:1021114710076