DOI QR코드

DOI QR Code

Effect of B4C Content on the Sintering Characteristics of 6061Al-B4C Composite Powder

B4C 함량에 따른 6061 Al-B4C 복합분말의 소결 특성 연구

  • Park, Jin-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Hong, Sung-Mo (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Kim, Kyoung-Yeol (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Min-Ku (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Chang-Kyu (Nuclear Materials Development Division, Korea Atomic Energy Research Institute (KAERI)) ;
  • Rhee, Won-Hyuk (Daewha Alloytech) ;
  • Lee, Yang Kyu (Dept. of Management Information System, Seowon University)
  • 박진주 (한국원자력연구원 원자력재료개발부) ;
  • 홍성모 (한국원자력연구원 원자력재료개발부) ;
  • 김경열 (한국원자력연구원 원자력재료개발부) ;
  • 이민구 (한국원자력연구원 원자력재료개발부) ;
  • 이창규 (한국원자력연구원 원자력재료개발부) ;
  • 이원혁 (대화알로이테크(주)) ;
  • 이양규 (서원대학교 경영정보학과)
  • Received : 2013.05.21
  • Accepted : 2013.06.17
  • Published : 2013.06.28

Abstract

In the present work, 6061 Al-$B_4C$ sintered composites containing different $B_4C$ contents were fabricated and their characteristic were investigated as a function of sintering temperature. For this, composite powders and their compacts with $B_4C$ various contents from 0 to 40 wt.% were fabricated using a planetary ball milling equipment and cold isostatic pressing, respectively, and then they were sintered in the temperature ranges of 580 to $660^{\circ}C$. Above sintering temperature of $640^{\circ}C$, real density was decreased due to the occurrence of sweat phenomena. In addition, it was realized that sinterability of 6061Al-$B_4C$ composite material was lowered with increasing $B_4C$ content, resulting in the decrease in its real density and at the same time in the increment of porosity.

Keywords

References

  1. J. Abenojar, M. A. Martinea and F. Velasco: J. Alloy. Compd., 422 (2006) 67. https://doi.org/10.1016/j.jallcom.2005.11.042
  2. M. Khakbiz and F. Akhlaghi: J. Alloy. Compd., 479 (2009) 334. https://doi.org/10.1016/j.jallcom.2008.12.076
  3. C. Harrison, E. Burgett, N. Hertel and E. Grulke: AIP Conference Proceedings, 969 (2008) 484.
  4. T. Donomae and M. Itoh: J. Nucl. Sci. Technol., 48 (2011) 826. https://doi.org/10.1080/18811248.2011.9711765
  5. M. R. Yusof, Y. Abdullah and Z. Samsu: Adv. Mater. Res., 535-537 (2012) 1877. https://doi.org/10.4028/www.scientific.net/AMR.535-537.1877
  6. Y. Rezaei Moghaddam, L. Rafat Motavalli and H. Miri Hakimabad: J. Radioanal. Nucl. Ch., 295 (2013) 157. https://doi.org/10.1007/s10967-012-1978-5
  7. I. Shaaban: Ann. Nucl. Energ., 51 (2013) 227. https://doi.org/10.1016/j.anucene.2012.07.034
  8. Y. Huang, W. Zhang, L. Liang, J. Xu and Z. Chen: Chem. Eng. J., 220 (2013) 143. https://doi.org/10.1016/j.cej.2013.01.059
  9. X. G. Chen: TMS Annual Meeting (2006) 343.
  10. V. P. Mahesh, P. S. Nair, T. P. D. Rajan, B. C. Pai and R. C. Hybli: J. Compos. Mater., 45 (2011) 2371. https://doi.org/10.1177/0021998311401086
  11. T. D. Park, K. K. Baek and D. S. Kim: Met. Mater. Inter., 3 (1997) 46. https://doi.org/10.1007/BF03026105
  12. L. Jing, Z. Ke and X. Guoliang: Adv. Mater. Res., 535-537 (2012) 883. https://doi.org/10.4028/www.scientific.net/AMR.535-537.883
  13. S. M. Hong, J. J. Park, E. K. Park, M. K. Lee, C. K. Rhee, J. M. Kim and J. K. Lee: J. Kor. Powd. Met. Inst., 19 (2012) 291 (Korean). https://doi.org/10.4150/KPMI.2012.19.4.291
  14. R. Charles, Manning Jr. and T. B. Gurganus: J. Am. Cer. Soc., 52 (1969) 115. https://doi.org/10.1111/j.1151-2916.1969.tb11193.x