• 제목/요약/키워드: single-walled carbon nanotube

Search Result 217, Processing Time 0.032 seconds

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Investigation of Temperature Dependence for CNT Semiconductor in External Magnetic Field (외부 자기장내의 반도체 CNT의 온도의존 조사)

  • Park, Jung-Il;Lee, Haeng-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.3
    • /
    • pp.73-78
    • /
    • 2012
  • We calculated the electron spin resonance (ESR) line-profile function. The line-width of single-walled carbon nanotube (SWNT) was studied as a function of the temperature at a frequency of 9.5 GHz in the presence of external electromagnetic radiation. The temperature dependence of the line-widths is obtained with the projection operator method (POM) proposed by Argyres and Sigel. The scattering is little affected in the low-temperature region (T < 200 K). We conclude that the calculation process presented in this method is useful for optical transitions in SWNT.

Rheological Properties of Cement Paste Mixed with Aqueously Dispersed Single-Walled Carbon Nanotubes (Single-Walled 탄소나노튜브 수용액 혼입 시멘트 페이스트의 유변학적 특성)

  • Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.113-121
    • /
    • 2019
  • Single walled carbon nanotube (SWCNT) has been used as a material for reinforcing various advanced materials because it has superior mechanical properties. However, pure SWCNT that does not have any functional group has a hydrophobic character, and exists as bundles due to the strong Van der Waals attraction between each SWCNT. Due to these reasons, it is very difficult to disperse SWCNTs in the water. In this work, in order to use SWCNT for production of cementitious composites, SWCNT was first dispersed in water to make an aqueous solution. Sodium deoxycholate (DOC) and Sodium dodecyl sulfate (SDS) were chosen as surfactants, and the dosage of DOC and SDS were 2wt% and 1wt%, respectively. Sonication and ultracentrifugation were applied to separate each SWCNT and impurities. Using such processed SWCNT solutions, cement paste was prepared and its shear stress vs. strain rate relationship was studied. The yield stress and plastic viscosity of cement paste were obtained using Bingham model. According to the results in this work, cement pastes made with DOC and SDS showed similar rheological behavior to that of air entrained cement paste. While cement paste made with DOC 2 wt.% SWCNT solution showed similar rheological behavior to that of plain cement paste, cement paste made with SDS 1 wt.% SWCNT solution showed different rheological behavior showing much less yield stress than plain cement paste.

Forward and backward whirling of a spinning nanotube nano-rotor assuming gyroscopic effects

  • Ouakad, Hassen M.;Sedighi, Hamid M.;Al-Qahtani, Hussain M.
    • Advances in nano research
    • /
    • v.8 no.3
    • /
    • pp.245-254
    • /
    • 2020
  • This work examines the fundamental vibrational characteristics of a spinning CNT-based nano-rotor assuming a nonlocal elasticity Euler-Bernoulli beam theory. The rotary inertia, gyroscopic, and rotor mass unbalance effects are all taken into consideration in the beam model. Assuming a nonlocal theory, two coupled 6th-order partial differential equations governing the vibration of the rotating SWCNT are first derived. In order to acquire the natural frequencies and dynamic response of the nano-rotor system, the nonlinear equations of motion are numerically solved. The nano-rotor system frequency spectrum is shown to exhibit two distinct frequencies: one positive and one negative. The positive frequency is known as to represent the forward whirling mode, whereas the negative characterizes the backward mode. First, the results obtained within the framework of this numerical study are compared with few existing data (i.e., molecular dynamics) and showed an overall acceptable agreement. Then, a thorough and detailed parametric study is carried out to study the effect of several parameters on the nano-rotor frequencies such as: the nanotube radius, the input angular velocity and the small scale parameters. It is shown that the vibration characteristics of a spinning SWCNT are significantly influenced when these parameters are changed.

Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates

  • Loghman, Abbas;Arani, Ali Ghorbanpour;Barzoki, Ali Akbar Mosallaie
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.677-687
    • /
    • 2017
  • The nonlinear buckling response of nano composite anti-symmetric functionally graded polymeric microplate reinforced by single-walled carbon nanotubes (SWCNTs) rested on orthotropic elastomeric foundation with temperature dependent properties is investigated. For the carbon-nanotube reinforced composite (CNTRC) microplate, a uniform distribution (UD) and four types of functionally graded (FG) distribution are considered. Based on orthotropic Mindlin plate theory, von Karman geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is employed to calculate the non-linear buckling response of the plate. Effects of FG distribution type, elastomeric foundation, aspect ratio (thickness to width ratio), boundary condition, orientation of foundation orthotropy and temperature are considered. The results are validated. It is found that the critical buckling load without elastic medium is significantly lower than considering Winkler and Pasternak medium.

Fabrication and characterization of a carbon nanotube-based point electron source

  • Choi, Ha-Kyu;Kim, G.Y.;Song, Y.I.;Jeong, H.J.;Lim, S.C.;Lee, Y.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1536-1537
    • /
    • 2005
  • We have made point electron sources using carbon nanotubes (CNTs). For the fabrication of point electron sources, CNTs were dispersed in a solution and attached on electrochemically etched W tips using electrophoresis. In our study, we have utilized various CNTs such as single-walled CNT (SWCNT), multiwalled CNT (MWCNT), and thin-MWCNT and threshold current, turn-on voltage, filed enhancement factor of each emitter have been studied upon a tube/bundle diameter and length. In addition, fieldemitted electron energy distribution of various CNT emitters is characterized.

  • PDF

Thermal-magneto-mechanical stability analysis of single-walled carbon nanotube conveying pulsating viscous fluid

  • R. Selvamani;M. Mahaveer Sree Jayan;Marin Marin
    • Coupled systems mechanics
    • /
    • v.12 no.1
    • /
    • pp.21-40
    • /
    • 2023
  • In thisstudy, the vibration problem ofthermo elastic carbon nanotubes conveying pulsating viscous nano fluid subjected to a longitudinal magnetic field is investigated via Euler-Bernoulli beam model. The controlling partial differential equation of motion is arrived by adopting Eringen's non local theory. The instability domain and pulsation frequency of the CNT is obtained through the Galerkin's method. The numerical evaluation of thisstudy is devised by Haar wavelet method (HWM). Then, the proposed model is validated by analyzing the critical buckling load computed in presentstudy with the literature. Finally, the numerical calculation ofsystem parameters are shown as dispersion graphs and tables over non local parameter, magnetic flux, temperature difference, Knudsen number and viscous parameter.

NO Gas Sensing Properties of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성)

  • Park, Seong-Yong;Jung, Hoon-Chul;Ahn, Eun-Seong;Nguyen, Le Hung;Kang, Youn-Jin;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.655-659
    • /
    • 2008
  • The NO gas sensing properties of ZnO-carbon nanotube (ZnO-CNT) composites fabricated by the coaxial coating of single-walled CNTs with ZnO were investigated using pulsed laser deposition. Upon examination, the morphology and crystallinity of the ZnO-CNT composites showed that CNTs were uniformly coated with polycrystalline ZnO with a grain size as small as 5-10 nm. Gas sensing measurements clearly indicated a remarkable enhancement of the sensitivity of ZnO-CNT composites for NO gas compared to that of ZnO films while maintaining the strong sensing stability of the composites, properties that CNT-based sensing materials do not have. The enhanced gas sensing properties of the ZnO-CNT composites are attributed to an increase in the surface adsorption area of the ZnO layer via the coating by CNTs of a high surface-to-volume ratio structure. These results suggest that the ZnO-CNT composite is a promising template for novel solid-state semiconducting gas sensors.

Effects of Co Doping on NO Gas Sensing Characteristics of ZnO-Carbon Nanotube Composites (산화아연-탄소나노튜브 복합체의 일산화질소 가스 감지 특성에 미치는 코발트 첨가 효과)

  • Jung, Hoon-Chul;Ahn, Eun-Seong;Hung, Nguyen Le;Oh, Dong-Hoon;Kim, Hyo-Jin;Kim, Do-Jin
    • Korean Journal of Materials Research
    • /
    • v.19 no.11
    • /
    • pp.607-612
    • /
    • 2009
  • We investigated the effects of Co doping on the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with ZnO using pulsed laser deposition. Structural examinations clearly confirmed a distinct nanostructure of the CNTs coated with ZnO nanoparticles of an average diameter as small as 10 nm and showed little influence of doping 1 at.% Co into ZnO on the morphology of the ZnO-CNT composites. It was found from the gas sensing measurements that 1 at.% Co doping into ZnO gave rise to a significant improvement in the response of the ZnO-CNT composite sensor to NO gas exposure. In particular, the Co-doped ZnO-CNT composite sensor shows a highly sensitive and fast response to NO gas at relatively low temperatures and even at low NO concentrations. The observed significant improvement of the NO gas sensing properties is attributed to an increase in the specific surface area and the role as a catalyst of the doped Co elements. These results suggest that Co-doped ZnOCNT composites are suitable for use as practical high-performance NO gas sensors.

Effect of nonlinear FG-CNT distribution on mechanical properties of functionally graded nano-composite beam

  • Zerrouki, Rachid;Karas, Abdelkader;Zidour, Mohamed;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.2
    • /
    • pp.117-124
    • /
    • 2021
  • This work focused on the novel numerical tool for the bending responses of carbon nanotube reinforced composites (CNTRC) beams. The higher order shear deformation beam theory (HSDT) is used to determine strain-displacement relationships. A new exponential function was introduced into the carbon nanotube (CNT) volume fraction equation to show the effect of the CNT distribution on the CNTRC beams through displacements and stresses. To determine the mechanical properties of CNTRCs, the rule of the mixture was employed by assuming that the single-walled carbon nanotubes (SWCNTs)are aligned and distributed in the matrix. The governing equations were derived by Hamilton's principle, and the mathematical models presented in this work are numerically provided to verify the accuracy of the present theory. The effects of aspect ratio (l/d), CNT volume fraction (Vcnt), and the order of exponent (n) on the displacement and stresses are presented and discussed in detail. Based on the analytical results. It turns out that the increase of the exponent degree (n) makes the X-beam stiffer and the exponential CNTs distribution plays an indispensable role to improve the mechanical properties of the CNTRC beams.