• Title/Summary/Keyword: single-gas permeation

Search Result 56, Processing Time 0.018 seconds

Gas Permeation Properties of Hydroxyl-Group Containing Polyimide Membranes

  • Jung, Chul-Ho;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.16 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • A series of hydroxyl-group containing polyimides (HPIs) were prepared in order to investigate the structure-gas permeation property relationship. Each polymer membrane had structural characteristics that varied according to the dianhydride monomers. The imidization processes were monitored using spectroscopic and thermog-ravimetric analyses. The single gas permeability of He, $H_2$, $CO_2$, $O_2$, $N_2$ and $CH_4$ were measured and compared in order to determine the effect of the polymer structure and functional -OH groups on the gas transport properties. Surprisingly, the ideal selectivity of $CO_2/CH_4$ and $H_2/CH_4$ increased with increasing level of -OH incorporation, which affected the diffusion of $H_2$ or the solubility of $CO_2$ in HPIs. For $H_2/CH_4$ separation, the difference in the diffusion coefficients of $H_2$ and $CH_4$ was the main factor for improving the performance without showing any changes in the solubility coefficients. However, the solubility coefficient of $CO_2$ in the HPIs increased at least four fold compared with the conventional polyimide membranes depending on the polymer structures. Based on these results, the polymer membranes modified with -OH groups in the polymer backbone showed favorable gas permeation and separation performance.

Preparation and Characterization of α-alumina Hollow Fiber Membrane (알루미나 중공사막 제조 및 특성 분석)

  • Che, Jin Woong;Lee, Hong Joo;Park, Jung Hoon
    • Membrane Journal
    • /
    • v.26 no.3
    • /
    • pp.212-219
    • /
    • 2016
  • The alumina hollow fiber membranes were prepared by spinning and sintering a polymer solution containing suspended alumina powders. For determine pore structure of hollow fiber membranes formed by different solvent-nonsolvent interaction rate, dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) were prepared in dope solution by solvent, polyethersulfone (PESf) and polyvinylpyrrolidone (PVP) were used as a polymer binder and additive. The pore structure of hollow fiber membranes was characterized using scanning electron microscope (SEM). The alumina hollow fiber membranes prepared by DMSO, DMAc were had the asymmetric structure mixed sponge-like and finger-like morphology, while TEP solvent were had single sponge-like structure. The prepared hollow fiber membranes were analyzed gas permeation and mechanical strength experiment also. The hollow fiber membrane having single sponge-like structure was had high gas permeation performance. On the contrary to this, more finger-like morphology was less gas permeation performance.

Preparation of Nanoporous Ceramic Membranes by Sol-gel Method and Characterization of Gas Permeation (졸-겔법에 의한 나노기공성 세라믹 막의 제조 및 기체투과 특성)

  • Lee, Yong-Taek;Choi, Ga-Young;Han, Hyuk-Hee
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.176-184
    • /
    • 2008
  • Nano-porous ceramic membranes was synthesized by the sol-gel method. Gas permeation of hydrogen and nitrogen was determined by single composition gas. Pore size $0.1{\mu}m$ and porosity 32% of flat type ${\alpha}-Al_2O_3$ substrate was manufactured. An intermediate ${\gamma}-Al_2O_3$ layer with pore size of 4 nm was formed by dip-coating. Polymeric silica sol was synthesized by acid catalyzed hydrolysis and condensation of tetra-ethyl-ortho-silicate. Supported membranes on alumina were prepared by dipping and calcining. He, $N_2$ permeation experiments with nanoporous sol-gel modified supported ceramic membranes were peformed to determine the gas transport characteristics. $He/N_2$ permselectivity around $100{\sim}160$ and helium permeation in the order of $10^{-7}mol/m^2{\cdot}s{\cdot}Pa$ were measured in the temperature range of $303{\sim}363K$.

High Temperature Gas Nitriding of Fe-20Mn-12Cr-1Cu Damping Alloy (Fe-20Mn-12Cr-1Cu 제진합금의 고온가스 질화처리)

  • Sung, Jee-Hyun;Kim, Yeong-Hee;Sung, Jang-Hyun;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.3
    • /
    • pp.105-112
    • /
    • 2013
  • The microstructural changes of Fe-20Mn-12Cr-1Cu alloy have been studied during high temperature gas nitriding (HTGN) at the range of $1000^{\circ}C{\sim}1150^{\circ}C$ in an atmosphere of nitrogen gas. The mixed microstructure of austenite and ${\varepsilon}$-martensite of as-received alloy was changed to austenite single phase after HTGN treatment at the nitrogen-permeated surface layer, however the interior region that was not affected nitrogen permeation remained the structure of austenite and ${\varepsilon}$-martensite. With raising the HTGN treatment temperature, the concentration and permeation depth of nitrogen, which is known as the austenite stabilizing element, were increased. Accordingly, the depth of austenite single phase region was increased. The outmost surface of HTGN treated alloy at $1000^{\circ}C$ appeared Cr nitride. And this was in good agreement with the thermodynamically calculated phase diagram. The grain growth was delayed after HTGN treatment temperature ranges of $1000^{\circ}C{\sim}1100^{\circ}C$ due to the grain boundary precipitates. For the HTGN treatment temperature of $1150^{\circ}C$, the fine grain region was shown at the near surface due to the grain boundary precipitates, however, owing to the depletion of grain boundary precipitates, coarse grain was appeared at the depth far from the surface. This depletion may come from the strong affinity between nitrogen and substitutional element of Al and Ti leading the diffusion of these elements from interior to surface. Because of the nitrogen dissolution at the nitrogen-permeated surface layer by HTGN treatment, the surface hardness was increased above 150 Hv compared to the interior region that was consisted with the mixed microstructure of austenite and ${\varepsilon}$-martensite.

Solvothermal Synthesis and Gas Permeation Properties of Nanoporous HKUST-1 Membranes (용매열합성법에 의한 나노기공 HKUST-1 막의 제조 및 기체투과 특성)

  • Noh, Seung-Jun;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.22 no.6
    • /
    • pp.435-440
    • /
    • 2012
  • In this study, nanoporous HKUST-1 membranes were synthesized by solvothermal method. It is very difficult to prepare uniform and crack-free HKUST-1 layer on macroporous alumina support by in-situ solvothermal method. In this study, continuous and crack-free HKUST-1 membranes could be obtained by spraying solvothermal precursor solution on the heated alumina support, followed by solvothermal synthesis. HKUST-1 membranes were characterized by XRD, FE-SEM and single gas permeation experiments.

Application of Molecular Simulation Techniques to Estimation of Gas Permeability in Zeolite Membranes

  • Takaba, Hiromitsu;Yamamoto, Atsushi;Nakao, Shin-Ichi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.33-38
    • /
    • 2004
  • Molecular modeling of gas permeation through zeolite membranes with/without intercrystalline region was carried out. Molecular dynamics (MD) and Monte Carlo (MC) simulations were performed to estimate the diffusion coefficient and adsorption parameters respectively, and our proposed combined method of molecular simulation techniques with a permeation theory (CMP) was used to estimate gas permeability. The calculated permeability of gases (Ar, He, Ne, $N_2$, $0_2$, $CH_4$) at 301 K for the single crystal membrane model was about one order of magnitude larger than the experiential values, although the dependence on the molecular weight of the permeating species agreed with experiments. On the other hand, the estimated permeability using the diffusivity and adsorption parameters of the intercrystalline region model was in good agreement with the experiments. The consistency between experiments and the estimated values means the importance of considering the intercrystalline region and the validity of CMP method to predict the performance of zeolite membranes.

  • PDF

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Effect of Precursor Alumina Particle Size on Pore Structure and Gas Permeation Properties of Tubular α-alumina Support Prepared by Slip Casting Process (초기 알루미나 분체의 입자크기가 주입성형법에 의해 제조된 튜브형 α-알루미나 지지체의 기공구조 및 기체 투과 특성에 미치는 영향)

  • Yang, Eun-Mok;Lee, Hye Ryeon;Cho, Churl-Hee
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.372-380
    • /
    • 2016
  • The present paper reports the effect of precursor alumina particle size on pore structure and single gas permeation properties of tubular ${\alpha}$-alumina supports, prepared by a combined process of slip casting and sintering. Pore diameter of as-prepared ${\alpha}$-alumina support was highly dependent on precursor ${\alpha}$-alumina particle size. Although, increase in the precursor particle size increases the pore diameter, but the porosity of ${\alpha}$-alumina support mainly control by sintering temperature. Sintering studies reveal that as sintering temperature increased porosity of support decreased. Single gas permeance results indicate that permence is proportional to the square of pore diameter and linearly to porosity. These dependencies revealed that gas permeation trough as-prepared ${\alpha}$-alumina support was governed by viscous flow mechanism. The present announces that precursor ${\alpha}$-alumina particle size and sintering temperature are key parameters to control gas permeantion properties of ${\alpha}$-alumina supports.

Permeation Properties of Single Gases ($N_2$, $O_2$, $SF_6$, $CF_4$) through PDMS and PEBAX Membranes (PDMS와 PEBAX 분리막을 통한 단일기체($N_2$, $O_2$, $SF_6$, $CF_4$) 투과 특성)

  • Kim, Hanbyul;Lee, Minwoo;Park, Wankeun;Lee, Soonjae;Lee, Hyunkyung;Lee, Sanghyup
    • Membrane Journal
    • /
    • v.22 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • In this study, we investigated permeation of single gas ($N_2$, $O_2$, $CF_4$, and $SF_6$) through flat sheet membrane composed of PDMS (poly-dimethylsiloxane) and PEBAX (polyether block amides). Gas permeation experiment was performed with various feed pressure. Permeability was estimated using permeation flux measured by continuous-flow technique. The permeability of gases except $SF_6$ in PDMS were decreased with the upstream pressure increased. $SF_6$ is much more permeable than $CF_4$, which is due to higher critical temperature of $SF_6$. The permeability decreased in the following order: $O_2$ > $N_2$ > $SF_6$ > $CF_4$. On the other hand, the permeability of gases in PEBAX followed the order: $O_2$ > $N_2$ > $CF_4$ > $SF_6$ which are opposite of the order of kinematic diameter (${\AA}$)($SF_6$ > $CF_4$ > $N_2$ > $O_2$). The $SF_6/CF_4$ pure gas selectivity in PDMS was 2.1 at 0.7 MPa.

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating (무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능)

  • Jeong In, Lee;Min Chang, Shin;Xuelong, Zhuang;Jae Yeon, Hwang;Chang-Hun, Jeong;Jung Hoon, Park
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.456-464
    • /
    • 2022
  • Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.