DOI QR코드

DOI QR Code

Preparation and Characterization of α-alumina Hollow Fiber Membrane

알루미나 중공사막 제조 및 특성 분석

  • 채진웅 (동국대학교 공과대학 화공생물공학과) ;
  • 이홍주 (동국대학교 공과대학 화공생물공학과) ;
  • 박정훈 (동국대학교 공과대학 화공생물공학과)
  • Received : 2016.05.17
  • Accepted : 2016.06.24
  • Published : 2016.06.30

Abstract

The alumina hollow fiber membranes were prepared by spinning and sintering a polymer solution containing suspended alumina powders. For determine pore structure of hollow fiber membranes formed by different solvent-nonsolvent interaction rate, dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) were prepared in dope solution by solvent, polyethersulfone (PESf) and polyvinylpyrrolidone (PVP) were used as a polymer binder and additive. The pore structure of hollow fiber membranes was characterized using scanning electron microscope (SEM). The alumina hollow fiber membranes prepared by DMSO, DMAc were had the asymmetric structure mixed sponge-like and finger-like morphology, while TEP solvent were had single sponge-like structure. The prepared hollow fiber membranes were analyzed gas permeation and mechanical strength experiment also. The hollow fiber membrane having single sponge-like structure was had high gas permeation performance. On the contrary to this, more finger-like morphology was less gas permeation performance.

알루미나 분말이 분산된 고분자용액을 비용매 유도 상전이법으로 방사 및 소결하여 알루미나 중공사막을 제조하였다. 용매-비용매의 상호작용 속도에 따른 중공사막 기공 구조 형성을 확인하고, 특성을 분석하기 위해 dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) 용매를 사용하여 방사액을 제조하였으며, 고분자 바인더로는 polyethersulfone (PESf), 첨가제로는 polyvinylpyrrolidone (PVP)를 사용하였다. 알루미나 중공사막의 기공 구조 변화를 확인하기 위해 SEM으로 중공사막 단면을 분석하였다. DMSO, DMAc 용매를 사용할 경우 지상 구조(finger-like structure)와 망상 구조(sponge-like structure)가 복합된 기공 구조가 나타났으며, TEP 용매를 사용할 경우 전체적으로 망상 구조를 가졌다. 기공 구조에 따른 중공사막의 특성을 확인하기 위해 기체투과도, 기공도 및 기계적 강도를 측정하였다. 망상 구조를 갖는 중공사막은 높은 기체 투과특성을 보였으며 지상 구조가 증가할수록 기체투과도가 감소하였다. 반대로 기계적 강도는 지상 구조가 발달할수록 증가하였다.

Keywords

References

  1. T. C. Merkel, H. Lin, X. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: an opportunity for membranes", J. Membr. Sci., 359, 126 (2010). https://doi.org/10.1016/j.memsci.2009.10.041
  2. M. M. Pendergast and E. M. V. Hoek, "A review of water treatment membrane nanotechnologies", Energy & Environmental Sci., 4, 1946 (2011). https://doi.org/10.1039/c0ee00541j
  3. G. Ciardelli, L. Corsi, and M. Marcucci, "Membrane separation for wastewater reuse in the textile industry", Resources conservation and recycling, 31, 189 (2001). https://doi.org/10.1016/S0921-3449(00)00079-3
  4. F. Fu and Q. Wang, "Removal of heavy metal ions from wastewaters: a review", J. of environmental management, 92, 407 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  5. K. Scott and R. Hughes, "Industrial membrane separation technology", Springer Science & Business Media (2012).
  6. Y. S. Kim, F. Wang, M. Hickner, S. McCartney, Y. T. Hong, W. Harrison, T. A. Zawodzinski, and J. E. McGrath, "Effect of acidification treatment and morphological stability of sulfonated poly (arylene ether sulfone) copolymer proton‐exchange membranes for fuel‐cell use above $100^{\circ}C$", J. Polym. Sci., 41, 2816 (2003).
  7. A. Sharma, S. P. Thampi, S. V. Suggala, and P. K. Bhattacharya, "Pervaporation from a dense membrane: Roles of permeant-membrane interactions, Kelvin effect, and membrane swelling", Langmuir, 20, 4708 (2004). https://doi.org/10.1021/la049725x
  8. S. Uemiya, T. Matsuda, and E. Kikuchi, "Hydrogen permeable palladium-silver alloy membrane supported on porous ceramics", J. Membr. Sci., 56, 315 (1991). https://doi.org/10.1016/S0376-7388(00)83041-0
  9. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, and M. Tsapatsis, "Microstructural optimization of a zeolite membrane for organic vapor separation", Science, 300, 456 (2003).
  10. C. Cui, M. He, and B. Hu, "Membrane solid phase microextraction with alumina hollow fiber on line coupled with ICP-OES for the determination of trace copper, manganese and nickel in environmental water samples", J. of hazard. mater., 187, 379 (2011). https://doi.org/10.1016/j.jhazmat.2011.01.038
  11. H. P. Hsieh, R. R. Bhave, and H. L. Fleming, "Microporous alumina membranes", J. Membr. Sci., 39, 221 (1988). https://doi.org/10.1016/S0376-7388(00)80931-X
  12. L. Shan, J. Shao, Z. Wang, and Y. Yan, "Preparation of zeolite MFI membranes on alumina hollow fibers with high flux for pervaporation", J. Membr. Sci., 378, 319 (2011). https://doi.org/10.1016/j.memsci.2011.05.011
  13. E. Gbenedio, Z. Wu, I. Hatim, B. F. K. Kingsbury, and K. Li, "A multifunctional Pd/alumina hollow fibre membrane reactor for propane dehydrogenation", Catalysis Today, 156, 93 (2010). https://doi.org/10.1016/j.cattod.2010.04.044
  14. M. P. Gimeno, Z. T. Wu, J. Soler, J. Herguido, K. Li, and M. Menendez, "Combination of a two-zone fluidized bed reactor with a Pd hollow fibre membrane for catalytic alkane dehydrogenation", Chem. Eng. J., 155, 298 (2009). https://doi.org/10.1016/j.cej.2009.06.037
  15. S. Koonaphapdeelert, Z. Wu, and K. Li, "Carbon dioxide stripping in ceramic hollow fibre membrane contactors", Chem. Eng. Sci., 64, 1 (2009). https://doi.org/10.1016/j.ces.2008.09.010
  16. H. J. Lee, E. Magnone, and J. H. Park, "Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for $CO_2$ capture using $H_2O$ as low-cost absorbent", J. Membr. Sci., 494, 143 (2015). https://doi.org/10.1016/j.memsci.2015.07.042
  17. R. Faiz, M. Fallanza, I. Ortiz, and K. Li, "Separation of olefin/paraffin gas mixtures using ceramic hollow fiber membrane contactors", Industrial & Engineering Chemistry Research, 52, 7918 (2013). https://doi.org/10.1021/ie400870n
  18. Y. S. Lin, K. J. De Vries, and A. J. Burggraaf, "Thermal stability and its improvement of the alumina membrane top-layers prepared by sol-gel methods", J. Membr. Sci., 26, 715 (1991).
  19. X. Tan, S. Liu, and K. Li, "Preparation and characterization of inorganic hollow fiber membranes", J. Membr. Sci., 188, 87 (2001). https://doi.org/10.1016/S0376-7388(01)00369-6
  20. B. F. K. Kingsbury, and K. Li, "A morphological study of ceramic hollow fibre membranes", J. Membr. Sci., 328, 134 (2009). https://doi.org/10.1016/j.memsci.2008.11.050
  21. G. R. Guillen, Y. Pan, M. Li, and E. M. V. Hoek, "Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review", Industrial & Engineering Chemistry Research, 50, 3798 (2011). https://doi.org/10.1021/ie101928r
  22. A. Mansourizadeh, "Experimental study of $CO_2$ absorption/stripping via PVDF hollow fiber membrane contactor", Chemical Engineering Research and Design, 90, 555 (2012). https://doi.org/10.1016/j.cherd.2011.08.017
  23. K. Li, "Ceramic membranes for separation and reaction", John Wiley & Sons, New York (2007).
  24. J. P. Kim, E. Magnone, J. H. Park, and Y. Lee, "Oxygen production of tubular module with $La_{0.6}Sr_{0.4}Ti_{0.3}Fe_{0.7}O_{3-{\delta}}$ coated $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane", J. Membr. Sci., 403, 188 (2012).
  25. A. F. M. Barton, "Handbook of Solubility Parameters and other cohesion parameters", CRC Press, Boca Raton, FL (1983).
  26. W. N. Sun, C. X. Chen, J. D. Li, and Y. Z. Lin, "Ultrafiltration Membrane Formation of PES-C, PES and PPESK Polymers with Different Solvents", Chinese J. Polym. Sci., 02, 27 (2009).