DOI QR코드

DOI QR Code

Hydrogen Permeation Performance of Pd, Pd/Cu Membranes Manufactured through Electroless Plating

무전해 도금을 이용해 제작한 Pd, Pd/Cu 분리막의 수소 투과 성능

  • Jeong In, Lee (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Min Chang, Shin (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Xuelong, Zhuang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Jae Yeon, Hwang (Department of Chemical and Biochemical Engineering, Dongguk University) ;
  • Chang-Hun, Jeong (Hygenenergy Co., Ltd.) ;
  • Jung Hoon, Park (Department of Chemical and Biochemical Engineering, Dongguk University)
  • 이정인 (동국대학교 화공생물공학과) ;
  • 신민창 (동국대학교 화공생물공학과) ;
  • 장학룡 (동국대학교 화공생물공학과) ;
  • 황재연 (동국대학교 화공생물공학과) ;
  • 정창훈 ((주)하이젠에너지) ;
  • 박정훈 (동국대학교 화공생물공학과)
  • Received : 2022.10.11
  • Accepted : 2022.11.01
  • Published : 2022.12.31

Abstract

Hydrogen permeation performance was analyzed by manufacturing Pd and Pd-Cu membranes through electroless plating. As a support for the Pd and Pd-Cu membranes, α-Al2O3 ceramic hollow fiber were used. Pd-Cu membrane was manufactured through sequential electroless plating, and then annealing was performed at 500°C, for 18 h in a hydrogen atmosphere to make Pd and Cu alloy. After annealing, the Pd-Cu membrane confirmed that the alloy was formed through EDS (Energy Dispersive X-ray Spectroscopy) and XRD (X-ray Diffraction) analysis. In addition, the thickness of the Pd and Pd-Cu plating layers were measured to be about 3.21 and 3.72 µm, respectively, through SEM (Scanning Electron Microscope) analysis. Hydrogen permeation performance was tested for hydrogen permeation in the range of 350~450°C and 1~4 bar in hydrogen single gas and mixed gas (H2, N2). In a single hydrogen gas, Pd and Pd-Cu membranes have flux of up to 54.42 and 67.17 ml/cm2⋅ min at 450 °C and 4 bar. In the mixed gas, it was confirmed that the separation factors of 1308 and 453 were obtained under the conditions of 450 °C and 4 bar.

본 실험에서는 무전해 도금을 통하여 Pd 및 Pd-Cu 분리막을 제조하여 수소 투과 성능을 분석하였다. 분리막의 지지체는 α-Al2O3 세라믹 중공사를 사용하였다. Pd-Cu 분리막은 무전해 도금을 실시하였고 Pd-Cu 합금을 만들기 위하여 수소 분위기에서 500°C, 18 h 동안의 열처리 과정을 거쳤다. 그 후, Pd-Cu 분리막은 EDS (Energy Dispersive X-ray Spectroscopy), XRD (X-ray Diffraction) 분석을 통해 합금이 형성된 것을 확인하였다. Pd 및 Pd-Cu 도금층의 두께는 SEM (Scanning Electron Microscope) 분석을 통해 각각 약 3.21, 3.72 µm으로 측정되었다. 수소 투과 성능은 수소 단일 가스, 혼합가스(H2, N2)에서 350~450°C, 1~4 bar의 범위에서 수소 투과 실험을 진행하였다. 수소 단일 가스에서 Pd 및 Pd-Cu 분리막은 450°C, 4 bar에서 최대 54.42, 67.17 ml/cm2⋅min의 flux를 가지며, 혼합가스에서는 450°C, 4 bar의 조건일 때, 각각 1308, 453의 separation factor가 나오는 것을 확인하였다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 대기환경 괸리기술 사업화 연계 기술개발사업의 지원을 받아 연구되었습니다.(과제번호: RE202103386, 과제명: 블루 수소충전소용 수소 정제분리 시스템 실증 기술개발-Technology development of hydrogen purification membrane separation demonstration for blue hydrogen station)

References

  1. P. M. Thoen, F. Roa, and J. D. Way, "High flux palladium-copper composite membranes for hydrogen separations", Desalination, 193, 224 (2006).
  2. J. Xuan, M. K. H. Leung, D. Y. C. Leung, and M. Ni, "A review of biomass-derived fuel processors for fuel cell systems", Renew. Sust. Energ. Rev., 13, 1301 (2009).
  3. F. Roa, M. J. Block, and J. D. Way, "The influence of alloy composition on the H2 flux of composite Pd-Cu membranes", Desalination, 147, 411 (2002).
  4. J. Y. Yang, C. Nishimura, and M. Komaki, "Effect of overlayer composition on hydrogen permeation of Pd-Cu alloy coated V-15Ni composite membrane", J. Membr. Sci., 282, 337 (2006).
  5. M. D. Irfan Hatim, X. Tan, Z. Wu, and K. Li, "Pd/Al2O3 composite hollow fibre membranes: Effect of substrate resistances on H2 permeation properties", Chem. Eng. Sci., 66, 1150 (2011).
  6. G. B. Sun, K. Hidajat, and S. Kawi, "Ultra thin Pd membrane on α-Al2O3 hollow fiber by electroless plating: High permeance and selectivity", J. Membr. Sci., 284, 110 (2006).
  7. W. Chen, X. Hu, R. Wang, and Yan Huang, "On the assembling of Pd/ceramic composite membranes for hydrogen separation", Sep. Purif. Technol., 72, 92 (2010).
  8. R. J. Westerwaal, E. A. Bouman, W. G. Haijea, H. Schreuders, S. Dutta, M. Y. Wu, C. Boelsma, P. Ngene, S. Basak, and B. Dam, "The hydrogen permeability of Pd-Cu based thin film membranes in relation to their structure: A combinatorial approach", Int. J. Hydrog. Energy, 40, 3932 (2015).
  9. G. J. Grashoff, C. E. Pilkington, and C. W. Corti, "The purification of hydrogen", Platin. Met. Rev., 27, 157 (1983).
  10. S. E. Nam and K. H. Lee, "Hydrogen separation by Pd alloy composite membranes: introduction of diffusion barrier", J. Membr. Sci., 192, 177 (2001).
  11. David J. Edlund and William A. Pledger, "Thermolysis of hydrogen sulfide in a metal-membrane reactor", J. Membr. Sci., 77, 255 (1993).
  12. S. D. Axelrod and A. C. Makrides, "X-ray studies of hydrogen-silver-palladium electrodes", J. Phys. Chem., 68, 2154 (1964).
  13. J. J. Conde, M. Marono, and J. M. SanchezHervas, "Pd-based membranes for hydrogen separation: Review of alloying elements and their influence on membrane properties", Sep. Purif. Rev., 46, 152 (2017).
  14. M. S. Islam, M. M. Rahman, and S. Ilias, "Characterization of Pd-Cu membranes fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation", Int. J. Hydrog. Energy, 37, 3477 (2012).
  15. F. Roa, J. D. Way, R. L. McCormick, and S. N. Paglieri, "Preparation and characterization of Pd-Cu composite membranes for hydrogen separation", Chem. Eng. J., 93, 11 (2003). https://doi.org/10.1016/S1385-8947(02)00257-7
  16. A. Kulprathipanja, G. O. Alptekin, J. L. Falconer, and J. D. Way, "Pd and Pd-Cu membranes: Inhibition of H2 permeation by H2S", J. Membr. Sci., 254, 49 (2005).
  17. H. J. Lee and J. H. Park, "Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor", J. Membr. Sci., 518, 79 (2016).
  18. S. H. Lee, B. J. Jeong, M. C. Shin, X. Zhuang, J. W. Jung, Y. J. Lee, D. Y. Won, and J. H. Park, "Development of high-durability ceramic hollow fiber and performance evaluation of contact membrane process according to pressure conditions", Membr. J., 30, 443 (2020).
  19. J. I. Lee, M. C. Shin, Xuelong Zhuang, J. Y. Hwang, E. Y. Kim, C. H. Jeong, and J. H. Hoon, "Preparation of Pd/Al2O3, Pd/Ag/Al2O3 Membranes and Evaluation of Hydrogen Permeation Performance", Membr. J., 32, 116 (2022).
  20. Samhun Yun and S. Ted Oyama, "Correlations in palladium membranes for hydrogen separation: A review", J. Membr. Sci., 375, 28 (2011).
  21. M. M. Rahman, M. S. Islam, M. A. Rahman, H. Tun, V. Deshmane, and S. Ilias, "Evaluation and characterization of Pd-Ag composite membrane fabricated by surfactant induced electroless plating (SIEP) for hydrogen separation", Sep. Sci. Technol., 54, 2084 (2019).
  22. Andreas Goldbach, Lixiang Yuan, and Hengyong Xu, "Impact of the fcc/bcc phase transition on the homogeneity and behavior of PdCu membranes", Sep. Purif. Technol., 73, 65 (2010).
  23. Kaihu Hou and Ronald Hughes, "Preparation of thin and highly stable Pd/Ag composite membranes and simulative analysis of transfer resistance for hydrogen separation", J. Membr. Sci., 214, 43 (2003).
  24. H. Lu, L. Zhu, W. Wang, W. Yang, and J. Tong, "Pd and Pd-Ni alloy composite membranes fabricated by electroless plating method on capillary α-Al2O3 substrates", Int. J. Hydrog. Energy, 40, 3548 (2015).