• Title/Summary/Keyword: single substrate

Search Result 1,318, Processing Time 0.027 seconds

Growth and Optical Properties for $AgGaSe_2$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한$AgGaSe_2$ 단결정 박막 성장과 광학적 특성)

  • Hong, Kwang-Joon;Back, Seoung-Nam
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.124-127
    • /
    • 2003
  • The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnance. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at $630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is $2.1{\mu}m$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. From the photoluminescence measurement of $AgGaSe_2$ single crystal thin film, we observed free excition ($E_x$) observable only in high quality crystal and neutral bound excition ($D^{\circ}$,X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8 meV and 14.1 meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.

  • PDF

Property and Microstructure Evaluation of Pd-inserted Nickel Monosilicides (Pd 삽입 니켈모노실리사이드의 물성과 미세구조 변화)

  • Yoon, Kijeong;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.69-79
    • /
    • 2008
  • A composition consisting of 10 nm-Ni/1 nm-Pd/(30 nm or 70 nm-poly)Si was thermally annealed using rapid thermal for 40 seconds at $300{\sim}1100^{\circ}C$ to improve the thermal stability of conventional nickel monosilicide. The annealed bilayer structure developed into $Ni(Pd)Si_x$, and the resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness were investigated. The silicide, which formed on single crystal silicon, could defer the transformation of $NiSi_2$, and was stable at temperatures up to $1100^{\circ}C$. It remained unchanged on polysilicon substrate compared with the sheet resistance of conventional nickel silicide. The silicides annealed at $700^{\circ}C$, formed on single crystal silicon and 30 nm polysilicon substrates exhibited 30 nm-thick uniform silicide layers. However, silicide annealed at $1,000^{\circ}C$ showed preferred and agglomerated phase. The high resistance was due to the agglomerated and mixed microstructures. Through X-ray diffraction analysis, the silicide formed on single crystal silicon and 30 nm polysilicon substrate, showed NiSi phase on the entire temperature range and mixed phases of NiSi and $NiSi_2$ on 70 nm polysilicon substrate. Through scanning probe microscope (SPM) analysis, we confirmed that the surface roughness increased abruptly until 36 nm on 30 nm polysilicon substrate while not changed on single crystal and 70 nm polysilicon substrates. The Pd-inserted nickel monosilicide could maintain low resistance in a wide temperature range and is considered suitable for nano-thick silicide processing.

Influence of Substrate Temperature of KLN Thin Film Deposited on Amorphoous Substrate (비정질 기판위에 증착한 KLN 박막의 기판온도에 의한 영향)

  • 박성근;최병진;홍영호;전병억;김진수;백민수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • The influences of substrate temperature were studied when fabricating KLN thin film on amorphous substrate using an rf-magnetron sputtering method. Investigating the vaporization temperature of the each element, the excess ratio of target and the optimum deposition conditions were effectively selected when thin filmizing a material which have elements with large difference fo vaporization temperature. In order to compensate K and Li which have lower vaporization temperatures than Nb, KLN target of composition excess with K of 60% and Li of 30% was used. KLN thin film fabricated on Corning 1737 glass substrate had single KLN phase above 58$0^{\circ}C$ of substrate temperature and crystallized to c-axis direction. The optimum conditions were rf power of 100W, process pressure of 150mTorr, and substrate temperature of $600^{\circ}C$.

  • PDF

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy (ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장)

  • Jo, Seong-Ryong;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.12 no.4
    • /
    • pp.304-307
    • /
    • 2002
  • A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Properties of Freestanding GaN Prepared by HVPE Using a Sapphire as Substrate (사파이어를 기판으로 이용하여 HVPE법으로 제작한 Freestanding GaN의 특성)

  • Lee, Yeong-Ju;Kim, Seon-Tae
    • Korean Journal of Materials Research
    • /
    • v.8 no.7
    • /
    • pp.591-595
    • /
    • 1998
  • In this work, the freestanding GaN single crystalline substrates without cracks were grown by hydride vapor phase epitaxy (HVPE) and its some properties were investigated. The GaN substrate, having a current maximum size of 350 $\mu\textrm{m}$-thickness and 100$\textrm{mm}^2$ area, were obtained by HVPE growth of thick film GaN on sapphire substrate and subsequent mechanical removal of the sapphire substrate. A lattice constant of $C_o$= 5.18486 $\AA$ and a FWHM of DCXRD was 650 arcsec for the single crystalline GaN substrate. The low temperature PL spectrum consist of three excitonic emission and a deep D- A pair recombination at 1.8eV. The Raman E, (high) mode frequency was 567$cm^{-1}$ which was the same as that of strain free bulk single crystals. The Hall mobility and carrier concentration was 283$cm^3$<\ulcornerTEX>/ V.sand 1.1$\times$$10^{18}cm^{-3}$, respectively.

  • PDF

Evaporative Self-Assembly of Single-Walled Carbon Nanotubes for Field Effect Transistor (용매증발기반 자기조립을 이용한 단일벽 탄소나노튜브 정렬 및 트랜지스터 응용)

  • Kang, Seok Hee;Jeong, Do Young;Eom, Seong Un;Hwang, Cheong Seok;Hong, Suck Won
    • Korean Journal of Materials Research
    • /
    • v.23 no.8
    • /
    • pp.453-461
    • /
    • 2013
  • Controlling the stick and slip motions of the contact lines in a confined geometry comprised of a spherical lens with a flat substrate is useful for manufacturing polymer ring patterns. We used a sphere on a flat geometry, by which we could control the interfaces of the solution, vapor and substrate. By this method, hundreds of concentric ring-pattern formations of a linear conjugated polymer, poly [2-methoxy-5-(2-thylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), were generated with excellent regularity over large areas after complete solvent evaporation. Subsequently, the MEH-PPV ring patterns played a role as a directed template to organize highly regular concentric rings of single-walled carbon nanotubes(SWCNTs); when a droplet of the SWCNT suspension in water was casted onto the prepared substrate, hydrophobic polymer patterns confined the water dispersed SWCNTs in between the hydrophilicized $SiO_2/Si$ substrate. As the solvent evaporated, SWCNT-rings were formed in between MEH-PPV rings with controlled density. Finally, we used a lift-off process to produce SWCNT patterns by the removal of a sacrificial polymer template with organic solvent. We also fabricated a field effect transistor using self-assembled SWCNT networks on a $SiO_2/Si$ substrate.

Sidewall effect in a stress induced method for Spontaneous growth of Bi nanowires

  • Kim, Hyun-Su;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.95-95
    • /
    • 2009
  • Single-crystalline Bi nanowires have motivated many researchers to investigate novel quasi-one-dimensional phenomena such as the wire-boundary scattering effect and quantum confinement effects due to their electron effective mass (~0.001 me). Single crystalline Bi nanowires were found to grow on as-sputtered films after thermal annealing at $270^{\circ}C$. This was facilitated by relaxation of stress between the film and the thermally oxidized Si substrate that originated from a mismatch of the thermal expansion. However, the method is known to produce relatively lower density of nanowires than that of other nanowire growth methods for device applications. In order to increase density of nanowire, we propose a method for enhancing compressive stress which is a driving force for nanowire growth. In this work, we report that the compressive stress can be controlled by modifying a substrate structure. A combination of photolithography and a reactive ion etching technique was used to fabricate patterns on a Si substrate. It was found that the nanowire density of a Bi film grown on $100{\mu}m{\times}100{\mu}m$ pattern Si substrate increased over seven times higher than that of a Bi sample grown on a normal substrate. Our results show that density of nanowire can be enhanced by sidewall effect in optimized proper pattern sizes for the Bi nanowire growth.

  • PDF

ZnO film growth on sapphire substrate by RF magnetron sputtering (RF 스퍼터링 법에 의한 사파이어 기판상의 ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.215-219
    • /
    • 2004
  • ZnO epitaxial films have been grown on a (0001)sapphire substrate by RF magnetron sputtering. The single crystalline ZnO films were grown at the condition of growth rate of about 0.1~0.2 $\mu\textrm{m}$/hr and the substrate temperature of $600^{\circ}C$. The film thickness was about 400~500 nm. The thin film quality and micro-structure have been evaluated by XRD and TEM observation.

Nucleation of CVD Diamond on Various Substrate Materials

  • Fukunaga, O.;Qiao, Xin;Ma, Yuefei;Shinoda, N.;Yui, K.;Hirai, H.;Tsurumi, T.;Ohashi, N.
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.184-187
    • /
    • 1996
  • Diamod nucleation by mw assisted CVD was examined various conditions namely, (1) diamond nucleation on variour substrate materials, such as Si, cubic BN, pyrolytic BN and AIN, (2) AST(Activated species transport) method which promote nucleation of diamond on single crystal and polycrystalline alumina substrate was developed. (3) Effect of bias enhancement of nucleation on single crystalline Si was examined, and finally (4) DST (Double step treatment) method was developed to enhance diamond nucleation on Ni. In this method, we separated carbon diffusing process into Ni, carbon precipitating process from the inside of Ni and diamond precipitation process.

  • PDF

The Laminating process for Single Substrate Flexible LCD

  • Bae, Kwang-Soo;Choi, Yoon-Seuk;Kim, Hak-Rin;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1125-1128
    • /
    • 2007
  • The laminating technique for developing flexible liquid crystal display was demonstrated by using a thin UV curable polymer film and a plastic substrate with patterned polymer wall structure. We adopted the rigid wall structure to provide a solid mechanical support for the stable molecular alignment of liquid crystals (LCs) in the device. The cover film was prepared to have an ability of aligning LC molecules by patterning a micro-groove structure using the soft-lithographic process. These two substrates can be assembled tightly by the laminating and one-step UV irradiation process because of the adhesive nature of the used UV curable polymers. Proposed method can be used to fabricate the flexible LC display with simplicity and also be applicable for a cost-effective roll-to-roll process.

  • PDF