DOI QR코드

DOI QR Code

Growth of GaN on ZnO Substrate by Hydride Vapor-Phase Epitaxy

ZnO 기판 위에 Hydride Vapor-Phase Epitaxy법에 의한 GaN의 성장

  • 조성룡 (한밭대학교 신소재공학부) ;
  • 김선태 (한밭대학교 신소재공학부)
  • Published : 2002.04.01

Abstract

A zinc oxide (ZnO) single crystal was used as a substrate in the hydride vapor-phase epitaxy (HVPE) growth of GaN and the structural and optical properties of GaN layer were characterized by x- ray diffraction, transmission electron microscopy, secondary ion mass spectrometry, and photoluminescence (PL) analysis. Despite a good lattice match and an identical structure, ZnO is not an appropriate substrate for application of HVPE growth of GaN. Thick film could not be grown. The substrate reacted with process gases and Ga, being unstable at high temperatures. The crystallinity of ZnO substrate deteriorated seriously with growth time, and a thin alloy layer formed at the growth interface due to the reaction between ZnO and GaN. The PL from a GaN layer demonstrated the impurity contamination during growth possibly due to the out-diffusion from the substrate.

Keywords

References

  1. B. Monemar, J. Mat. Sci., 10, 227 (1999)
  2. S.J. Pearton, J.C. Zolper, R.J. Shul, and F. Ren, J. Appl. Phys., 86, 1 (1999) https://doi.org/10.1063/1.371145
  3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano, K. Chocho, Jpn. J. Appl. Phys., 37, L309 (1998) https://doi.org/10.1143/JJAP.37.L309
  4. S.T. Kim, Y.J. Lee, D.C. Moon, C.H. Hong, and T.K. Yoo, J. Crystal Growth, 194, 37 (1998) https://doi.org/10.1016/S0022-0248(98)00551-X
  5. K. Kelly, R.P. Vaudo, V.M. Phanse, L. Gorgens, O. Ambacher, and M. Stutzman, Jpn. J. Appl. Phys., 38, L217 (1999) https://doi.org/10.1143/JJAP.38.L217
  6. S.S. Park, I.W. Park, and S.H. Choh, Jpn. J. Appl. Phys., 39, L1141 (2000) https://doi.org/10.1143/JJAP.39.L1141
  7. Y.S. Park, J. Korean Phys. Soc., 34, S199 (1999)
  8. E.S. Hellamn, D.N. Buchanan, D. Wiesmann, I. Brener, MRS Internet J. Nitride Semicond. Res., 1, 16 (1996) https://doi.org/10.1557/S1092578300001885
  9. S. Gu, R. Zhang, J. Sun, L. Zhang, and T. F. Kuech, Appl. Phys. Lett., 76, 3454 (2000) https://doi.org/10.1063/1.126675
  10. T. Detchprohm, K. Hiramatsu, H. Amano, I. Akasaki, Appl. Phys. Lett., 61, 2688 (1992) https://doi.org/10.1063/1.108110
  11. S.T. Kim, D.C. Moon, C.H. Hong, Korean J. Mat. Res., 6, 457 (1996)
  12. S.T. Kim, Y.J. Lee, D.C. Moon, C. Lee, H.Y. Park, J. Electron. Mat., 27, 1112 (1998) https://doi.org/10.1007/s11664-998-0147-7
  13. Handbook of Chemistry and Physics (65th edition, CRC Florida, 1985) p.B117, p.B158
  14. Comprehensive Inorganic Chemistry, Vol. 3 (Pergamon, New York, 1973) Chap. 30
  15. M. Illegems, R. Dingle, and R.A. Logan, J. Appl. Phys., 43, 3797 (1972) https://doi.org/10.1063/1.1661813
  16. J.I. Pankove, J. Lumin, 7, 114 (1973) https://doi.org/10.1016/0022-2313(73)90062-8
  17. T. Ueda, T.F. Huang, S. Spruytte, H. Lee, M. Yuri, K. Itoh, T. Baba, and J.S. Harris Jr., J. Crystal Growth, 187, 340 (1998) https://doi.org/10.1016/S0022-0248(97)00886-5