• Title/Summary/Keyword: single pier

Search Result 51, Processing Time 0.024 seconds

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Seismic performance of single pier skewed bridges with different pier-deck connections

  • Attarchiana, Nahid;Kalantari, Afshin;Moghadam, Abdolreza S.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1467-1486
    • /
    • 2016
  • This research focuses on seismic performance of a class of single pier skewed bridges with three different pier-deck connections; skew angles vary from $0^{\circ}$ to $60^{\circ}$. A well-documented four span continuous deck bridge has been modeled and verified. Seat-type connections with fixed and sliding bearings plus monolithic pier-deck connections are studied. Shear keys are considered either fully operational or ineffective. Seismic performances of the bridges and the structural components are investigated conducting bidirectional nonlinear time history analysis in OpenSees. Several global and intermediate engineering demand parameters (EDP) have been studied. On the basis of results, the values of demand parameters of skewed bridges, such as displacement and rotation of the deck plus plastic deformation and torsional demand of the piers, increase as the skew angle increases. In order to eliminate the deck collapse probability, the threshold skew angle is considered as $30^{\circ}$ in seat-type bridges. For bridges with skew angles greater than $30^{\circ}$, monolithic pier-deck connections should be applied. The functionality of shear keys is critical in preventing large displacements in the bearings. Pinned piers experience considerable ductility demand at the bottom.

Behavior of Single Pole Foundation using Experimental Study (실증시험을 통한 강관주기초의 거동특성)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.598-604
    • /
    • 2010
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Nine prototype field-tests (1/8 scale) have been conducted in order to determine the vertical and lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Experimental Study on the Laterally Loaded Behavior of Single Pole Foundation (강관주 철탑기초의 수평거동에 관한 실험적 연구)

  • Kim, Dae-Hong;Kim, Kyoung-Yul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1087-1094
    • /
    • 2008
  • The drilled pier foundation is widely used to support transmission line structures due to its simplicity of construction. When this foundation type is used in conjunction with a single shaft or H-frame structure, it is subjected to a high overturning moment, combined with modest vertical and shear loads. Since the length and diameter of drilled piers are often governed by a maximum permissible deflection, many drilled piers being installed today are very conservatively designed. In this study, Five prototype field-tests (1/8 scale) have been conducted in order to determine the lateral resistance of drilled pier foundation for single pole structures. These test results reveal the test piers behaved essentially as rigid bodies in soil (6D) and the center of rotation of the pier were typically 0.6~0.4 of the pier depth below ground surface. Test results also show the relationship between the applied load and the deflection at the top of the pier is highly nonlinear.

  • PDF

Prediction of scour around single vertical piers with different cross-section shapes

  • Bordbar, Amir;Sharifi, Soroosh;Hemida, Hassan
    • Ocean Systems Engineering
    • /
    • v.11 no.1
    • /
    • pp.43-58
    • /
    • 2021
  • In the present work, a 3D numerical model is proposed to study local scouring around single vertical piers with different cross-section shapes under steady-current flow. The model solves the flow field and sediment transport processes using a coupled approach. The flow field is obtained by solving the Unsteady Reynolds Averaged Navier-Stokes (URANS) equations in combination with the k-ω SST turbulence closure model and the sediment transport is considered using both bedload and suspended load models. The proposed model is validated against the empirical measurements of local scour around single vertical piers with circular, square, and diamond cross-section shapes obtained from the literature. The measurement of scour depth in equilibrium condition for the simulations reveal the differences of 4.6%, 6.7% and 13.1% from the experimental measurements for the circular, square, and diamond pier cases, respectively. The model displayed a remarkable performance in the prediction of scour around circular and square piers where horseshoe vortices (HSVs) have a leading impact on scour progression. On the other hand, the maximum deviation was found in the case of the diamond pier where HSVs are weak and have minimum impact on the formation of local scour. Overall, the results confirm that the prediction capability of the present model is almost independent of the strength of the formed HSVs and pier cross-section shapes.

Bending Moment Analysis simpiified in Slab Bridges supported by Column Type Piers (기둥 지지된 슬래브교의 모멘트 간략산정법에 관한 연구)

  • Lee, Chae-Gyu;Kim, Young-Ihn;Kim, Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.73-78
    • /
    • 1992
  • It would be much effective that single column type pier is used in concrete slab bridges rather than gravity type pier is used. To determine the longitudinal bonging moment in concrete slab bridges supported by single column type piers, the concept of effective width is applied. By elastic plate theory cooperated with finite element method, the distribution of the longitudinal moment of the slab supported by single column type piers is studied. The main variables are span, width, and thickness of the slab and column section size. Then the analytical results obtained are summarized and analysed to evaluate the maximum longitudinal negative moment by simple beam analysis.

  • PDF

An Experimental Study of Backwater Effects Caused by the Covered Reach of Urban Streams

  • Yoon, Yong-Nam;Ahn, Jae-Hyun;Kim, Jin-Kwan
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.19-30
    • /
    • 1997
  • The hydraulics of flow within the covered reach of urban streams is very complicated due to the accumulation and interference effect of eddies around the multipli piers supporting the covering slab. An extensive experimental study is done to quantitatively estimate the backwater rise effect caused by various arrays of multiple piers. The factors governing the backwater rise are found out to be the contraction ratio due to the piers. Foude number of the flow, longitudinal pier spacing, and the length of the covered reach. For a single section of lateral pier arralyzed and a multiple regression equation derived. The effect of multiple piers, arrayed in both lateral and longitudinal directions. on the backwater rise is analyzed in terms of the contraction ratio. Froude number, longitudinal pier spacing and the total length of the covered reach. A multiple regression equation for the backwater rise estimation is proposed based on the experimental data collected in this study.

  • PDF

Parameteric Analysis for Up-lifting force on Slab track of Bridge (교량상 slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yoon;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Probabilistic pounding analysis of high-pier continuous rigid frame bridge with actual site conditions

  • Jia, Hongyu;Zhao, Jingang;Li, Xi;Li, Lanping;Zheng, Shixiong
    • Earthquakes and Structures
    • /
    • v.15 no.2
    • /
    • pp.193-202
    • /
    • 2018
  • This paper studied the probability of pounding occurred between decks and abutments of a long span high-pier continuous rigid fame bridge subjected to ground motions with local soil effect. A pounding probability analysis methodology has been proposed using peak acceleration at bedrock as intensity measure (IM) for multi-support seismic analysis. The bridge nonlinear finite element (FE) models was built with four different separation distances. Effect of actual site condition and non-uniform spatial soil profiles on seismic wave propagating from bedrock to ground surface is modelled. Pounding probability of the high-pier bridge under multi-support seismic excitations (MSSE) is analyzed based on the nonlinear incremental dynamic analysis (n-IDA). Pounding probability results under uniform excitations (UE) without actual local site effect are compared with that under MSSE with site effect. The study indicates that the required design separation length between deck and abutment under uniform excitations is larger than that under MSSE as the peak acceleration at bedrock increases. As the increase of both separation distance between deck and abutment and the peak acceleration, the probability of pounding occurred at a single abutment or at two abutments simultaneously under MSSE is less than that under UE. It is of great significance considering actual local site effect for determining the separation distance between deck and abutment through the probability pounding analysis of the high-pier bridge under MSSE.

The Increment Of The Local Scour Depth At Piers By Constructing The Bridge Between Existing Bridges

  • Choi, Gye-Woon;Kim, Gee-Hyoung
    • Water Engineering Research
    • /
    • v.1 no.2
    • /
    • pp.159-168
    • /
    • 2000
  • In this paper, the increment of the local scour depth at piers by constructing the bridge between existing bridges is examined through the experiments in which 5 piers in the non-cohesive bed material in the experimental flume were installed. In the experiments the maximum distance of 25 times of the pier length and the maximum distortion width of 8 times of the pier width were utilized. Through the experimental studies, it was indicated that low flow, which can be characterized as the flow having low Froude numbers, the maximum bed configuration change is obtained when the piers are installed in the straight line in the flor direction without any distortion. However, In the high flow, which can be characterized as the flow having high Froude numbers, the maximum bed configuration change is obtained when the piers are installed with some distortion from the flow direction. The influence of the bed configuration by interaction between bridge piers is changed depending upon the Froude numbers, the distance between piers, and the distortion width between adjacent bridge piers. Also, because the scour patterns are affected by the bed configuration, the maximum scour should be increased by about 60% compared to that in a single pier if the interaction between bridge piers exists. It can be suggested that the maximum scour depth at bridge piers predicted by applying the existing equations should be increased if the interaction between bridge piers exist. Those cases are found when new bridges are constructed successively in the river in the urban area.

  • PDF