• Title/Summary/Keyword: single grain

Search Result 571, Processing Time 0.03 seconds

Electron Scattering at Grain Boundaries in Tungsten Thin Films

  • Choe, Du-Ho;Kim, Byeong-Jun;Lee, Seung-Hun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.243.2-243.2
    • /
    • 2016
  • Tungsten (W) is recently gaining attention as a potential candidate to replace Cu in semiconductor metallization due to its expected improvement in material reliability and reduced resistivity size effect. In this study, the impact of electron scattering at grain boundaries in a polycrystalline W thin film was investigated. Two nominally 300 nm-thick films, a (110)-oriented single crystal film and a (110)-textured polycrystalline W film, were prepared onto (11-20) Al2O3 substrate and thermally oxidized Si substrate, respectively in identical fabrication conditions. The lateral grain size for the polycrystalline film was determined to be $119{\pm}7nm$ by TEM-based orientation mapping technique. The film thickness was chosen to significantly exceed the electron mean free path in W (16.1 and 77.7 nm at 293 and 4.2 K, respectively), which allows the impact of surface scattering on film resistivity to be negligible. Then, the difference in the resistivity of the two films can be attributed to grain boundary scattering. quantitative analyses were performed by employing the Mayadas-Shatzkes (MS) model, where the grain boundary reflection coefficient was determined to be $0.42{\pm}0.02$ and $0.40{\pm}0.02$ at 293 K and 4.2 K, respectively.

  • PDF

Optimized Electroplishing Process of Copper Foil Surface for Growth of Single Layer Graphene with Large Grain Size (큰 결정 크기를 가지는 단일층 그래핀 성장을 위한 구리 호일의 전해연마 공정 최적화)

  • Kim, Jaeeuk;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.122-127
    • /
    • 2017
  • Graphene grown on copper-foil substrates by chemical vapor deposition (CVD) has been attracting interest for sensor applications due to an extraordinary high surface-to-volume ratio and capability of large-scale device fabrication. However, CVD graphene has a polycrystalline structure and a high density of grain boundaries degrading its electrical properties. Recently, processes such as electropolishing for flattening copper substrate has been applied before growth in order to increase the grain size of graphene. In this study, we systemically analyzed the effects of the process condition of electropolishing copper foil on the quality of CVD graphene. We observed that electropolishing process can reduce surface roughness of copper foil, increase the grain size of CVD graphene, and minimize the density of double-layered graphene regions. However, excessive process time can rather increase the copper foil surface roughness and degrade the quality of CVD graphene layers. This work shows that an optimized electropolishing process on copper substrates is critical to obtain high-quality and uniformity CVD graphene which is essential for practical sensor applications.

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy (마찰교반접합된 니켈기 초합금의 기계적 특성)

  • Song, Kuk-Hyun;Nakata, Kazuhiro
    • Korean Journal of Materials Research
    • /
    • v.21 no.7
    • /
    • pp.410-414
    • /
    • 2011
  • This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.

Comparative Study on the Fabrication of Single Grain YBCO Bulk Superconductors using Liquid Infiltration and Conventional Melt Growth Processes (단결정 YBCO 벌크 초전도체 제조에 대한 액상침투법과 고전적 용융공정의 비교연구)

  • Mahmood, Asif;Jun, Byung-Hyuk;Kim, Chan-Joong
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.42-46
    • /
    • 2009
  • With an aim of comparison, single grain Y-Ba-Cu-O (YBCO) bulk superconductors were fabricated using a liquid infiltration growth (LIG) process and a conventional melt growth (MTG) process with top seeding. The MTG process uses an $YBa_2Cu_3O_{7-x}$(Y123) powder as a precursor, while the LIG process uses $Y_2BaCuO_5(Y211)/Ba_3Cu_5O_8(Y035)$ pre-forms. The growth of a single Y123 domain on the top seed was successful in the both processes. Different feature between the two processes is the interior microstructure regarding the critical current density ($J_c$). The LIG-processed YBCO sample showed a lower porosity, more uniform distribution of Y211 particles and the enhanced Y211 refinement compared to the conventional MTG process. The $J_c$ improvement in the LIG process is attributed to the dispersion of finer Y211 particles as well as lower porosity within the Y123 superconducting matrix.

  • PDF

Growth of TiO$_2$(rutile) single crystals by FZ method under high oxygen pressure (고산소압의 적용에 따른 양질의 루틸상 TiO$_2$ 단결정 성장)

  • ;;;Iso Tanaka
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 2001
  • High oxygen pressure has been applied for a floating zone (FZ) crystal grower in order to grow high quality $TiO_2$(rutile) single crystals suitable for optical application. The $TiO_2$ crystals, grown under 0.3, 0.4, 0.5, and 0.8MPa oxygen pressure respectively, are all transparent and dark blue. The degree of the presence of sub-grain boundary in the crystal differs from the applied oxygen pressure. In particular, $TiO_2$ single crystals grown under0.5 MPa showed sub-grain boundary-free and estimated good for optical devices.

  • PDF

Competition Responses between Two Different Growth Type Varieties of Barley (생육형이 다른 대맥 품종간의 경합에 관한 연구)

  • Min-Shin Cho;Deok-Hyeong Han;Sun-Mok Keun;J. D. Lee;J. C. Kang
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1969
  • The experiment about the mixed sowing of two different growth type varieties of barley-Buheung and Suwon#18-has been conducted to determine the competition effect between two varieties, and its results are as follows: 1. Buheung-long stem variety-showed higher survived ratio than Suwon#18-short stem variety- and that tendency was significant under the high fertilized condition. 2. When tow varieties-Buheung and Suwon#18-were sowed together, the culm length of Buheung was shorter than the single planted Buheung and that of Suwon#18 was onger than the single planted Suwon#18, however, the panicle length showed the opposite tendency to the culm length variation. 3. The number of panicles and the number of grains did not show any differences among the treatments. 4. In case of the single sowing, Suwon#18 showed higher grain yield under the common fertilized condition but Buheung showed significantly increased grain yield under the heavy fertilized condition, however, in case of the mixed towing of two varieties, the grain yield was significantly increased in heavy fertilized plots than standard fertilization. 5. The competition power was significantly superior in Buheung to Suwon#18 and this tendency was rather definite according to the fertilizer application.

  • PDF

Effects of artificial holes on the cooling efficiency of single grain Y1.5Ba2Cu3O7-y bulk superconductors (단결정 Y1.5Ba2Cu3O7-y 벌크 초전도체의 냉각효율에 대한 인공 구멍의 효과)

  • Kim, Kwang-Mo;Park, Soon-Dong;Jun, Byung-Hyuk;Ko, Tae-Kuk;Kim, Chan-Joong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.3
    • /
    • pp.1-4
    • /
    • 2012
  • Effects of artificial holes on the cooling efficiency of single grain YBCO bulk superconductors were studied. Single grain YBCO bulk superconductors without artificial holes, with six 2.4 mm holes and six holes filled with Bi-Pb-Cd-Sn metal solder were fabricated by a top-seeded melt growth process for powder compacts with/without holes. Simulation for the cooling rate to a liquid nitrogen temperature (77 K) of YBCO samples was carried out using a finite element method (FEM) and the results are compared with the actual cooling rates of samples in liquid nitrogen. The simulated cooling times for the YBCO sample without holes, with six holes and with six holes filled with the metal solder were 80, 47 and 75 sec. respectively, which are similar to the actual cooling times of 84, 52 and 78 sec. estimated for the same samples cooled in liquid nitrogen. The shorter cooling time of the sample with artificial holes are attributed to the increased surface areas associated with the presence of artificial holes. The metal filling into the holes did not give any remarkable effect on the cooling efficiency.

Effects of Hot-Carrier Stress and Constant Current Stress on the Constant Performance Poly-Si TFT with a Single Perpendicular Grain Boundary (단일 수직형 그레인 경계 (Single Perpendicular Grain Boundary) 구조를 가지는 고성능 다결정 실리콘 박막 트랜지스터(Poly-Si TFT)에서의 고온 캐리어 스트레스(Hot Carrier Stress) 및 정전류 스트레스(Constant Current Stress) 효과)

  • Choi, Sung-Hwan;Song, In-Hyuk;Shin, Hee-Sun;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.50-52
    • /
    • 2006
  • 본 논문은 고성능 다결정 실리콘(Poly-Si) 박막 트랜지스터 (Thin Film Transistor)에서 단일 수직 그레인 경계(Single Perpendlcular Grain Boundary)가 고온 캐리어 스트레스(Hot Carrier Stress) 및 정전류 안정성 평가에서 어떠한 효과를 보이는가에 대해서 살펴보았다. 고온 캐리어 스트레스 하에서($V_G=V_{TH}+1V,\;V_D$ =12V),그레이 경계가 없는 다결정 실리콘 TFT와 비교했을 때 그레인 경계를 가지고 있는 다결정 실리를 TFT는 전기 전도(Electric Conduction)에 작용하는 자유 캐리어(Free Carrier)의 개수가 적기 때문에 상대적으로 더욱 우수한 전기적 특성을 나타낸다. 먼저 1000초 동안 고온 캐리어 스트레스를 가해준 결과 단일 그레인 경계를 가진 다결정 실리콘에서의 트랜스 컨덕턴스(Transconductance)의 이동 정도는 5% 미만으로 확인되었다. 반면에 같은 스트레스 조건 하에서 그레인 경계가 존재하지 않는 다결정 실리콘의 경우에는 그 이동 정도가 약 25%에 달하는 것으로 측정되었다. 다음으로 정전류 스트레스(Constant Current Stress) 인가시, 수직형 그레인 경계가 채널 영역 내에 존재하지 않는 다결정 실리콘 TFT는 드레인 접합 부분의 전계 세기를 비교했을 때, 그레인 경계를 가지고 있는 다결정 실리콘 TFT보다 상대적으로 낮은 원 인 때문에 적게 열화되는(Degraded) 특성을 확인할 수 있었다.

  • PDF

Resolution and Image processing Methods of Tomogram and There impact of Computational Velocity Estimation (토모그램의 해상도와 영상처리 기법이 속도예측에 미치는 영향)

  • Lee, Min-Hui;Song, Da-Hee;Keehm, Young-Seuk
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.147-154
    • /
    • 2009
  • Physical properties of rocks, such as velocity, are strongly dependant on detailed pore structures, and recently, pore micro-structures by X-ray tomography techniques have been used to simulate and understand the physical properties. However, the smoothing effect during the tomographic reconstruction procedure often causes an artifact - overestimating the contact areas between grains. The pore nodes near a grain contact are affected by neighboring grain nodes, and are classified into grain nodes. By this artifact, the pore structure has higher contact areas between grains and thus higher velocity estimation than the true one. To reduce this artifact, we tried two image processing techniques - sharpening filter and neural network classification. Both methods gave noticeable improvement on contact areas between grains visually; however, the estimated velocities showed only incremental improvement. We then tried to change the resolutions of tomogram and quantify its impact on velocity estimation. The estimated velocity from the tomogram with higher spatial resolution was improved significantly, and with around 2 micron spatial resolution, the calculated velocity was very close to the lab measurement. In conclusion, the resolution of pore micro-structure is the most important parameter for accurate estimation of velocity using pore-scale simulation techniques. Also the estimation can be incrementally improved if combined with image processing techniques during the pore-grain classification.

  • PDF

Estimation of Tool life by Simple & Multiple Linear Regression Analysis of $Si_3N_4$ Ceramic Cutting Tools (회귀분석에 의한 $Si_3N_4$세라믹 절삭공구의 공구수명 추정)

  • 안영진;권원태;김영욱
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.23-29
    • /
    • 2004
  • In this study, four kinds of $Si_3N_4$-based ceramic cutting tools with different sintering time were fabricated to investigate the relation among mechanical properties, grain size and tool life. They were used to turn gray cast iron at a cutting speed of 330m/min and depth of cut of 0.5mm and 1mm in dry, continuos cutting conditions. Multiple linear regression model was used to determine the relations among the mechanical property, grain size and the density. It was found that the combination of hardness and fracture toughness showed a good relation with tool life. It was also shown that hardness was the most important single element for the tool life.