DOI QR코드

DOI QR Code

Mechanical Properties of Friction Stir Welded Ni-Base Superalloy

마찰교반접합된 니켈기 초합금의 기계적 특성

  • 송국현 (한국생산기술연구원 융합신공정 연구그룹) ;
  • Received : 2011.06.23
  • Accepted : 2011.07.05
  • Published : 2011.07.27

Abstract

This study was carried out to evaluate the microstructures and mechanical properties of a friction stir welded Ni based alloy. Inconel 600 (single phase type) alloy was selected as an experimental material. For this material, friction stir welding (FSW) was performed at a constant tool rotation speed of 400 rpm and a welding speed of 150~200 mm/min by a FSW machine, and argon shielding gas was utilized to prevent surface oxidation of the weld material. At all conditions, sound friction stir welds without any weld defects were obtained. The electron back-scattered diffraction (EBSD) method was used to analyze the grain boundary character distributions (GBCDs) of the welds. As a result, dynamic recrystallization was observed at all conditions. In addition, grain refinement was achieved in the stir zone, gradually accelerating from 19 ${\mu}m$ in average grain size of the base material to 5.5 ${\mu}m$ (150 mm/min) and 4.1 ${\mu}m$ (200 mm/min) in the stir zone with increasing welding speed. Grain refinement also led to enhancement of the mechanical properties: the 200 mm/min friction stir welded zone showed 25% higher microhardness and 15% higher tensile strength relative to the base material.

Keywords

References

  1. C. T. Sims, N. S. Stoloff and W. C. Hagel, Superalloys II, p. 97, New York, Wiley (1987).
  2. J. D. Kim and J. H. Moon, Corrosion Sci., 46, 807 (2004). https://doi.org/10.1016/S0010-938X(03)00098-2
  3. Y. S. Lim, H. P. Kim, J. H. Han, J. S. Kim and H. S. Kwon, Corrosion Sci., 43, 1321 (2001). https://doi.org/10.1016/S0010-938X(00)00149-9
  4. J. B. Lee, D. G. Nam, N. H. Kang, Y. D. Kim, W. T. Oh and Y. D. Park, Kor. J. Mater. Res., 19(7), 369 (2009) (in Korean). https://doi.org/10.3740/MRSK.2009.19.7.369
  5. J. D. Kim, C. J. Kim and C. M. Chung, J. Mater. Process Tech., 114, 51 (2001). https://doi.org/10.1016/S0924-0136(01)00566-0
  6. M. B. Henderson, D. Arrell, R. Larsson, M. Heobel and G. Marchant, Science and Technology of Welding & Joining., 9, 13 (2004). https://doi.org/10.1179/136217104225017099
  7. R. Nandan, T. DebRoy and H. K. D. H. Bhadeshia, Progr. Mater. Sci., 53, 980 (2008). https://doi.org/10.1016/j.pmatsci.2008.05.001
  8. R. S. Mishra and Z. Y. Ma, Mater. Sci. Eng. R Rep., 50, 1 (2005). https://doi.org/10.1016/j.mser.2005.07.001
  9. J. Altenkirch, A. Steuwer, M. Peel, D. G. Richards and P. J. Withers, Mater. Sci. Eng, A488, 16 (2008).
  10. A. Simar, Y. Bréchet, B. de Meester, A. Denquin and T. Pardoen, Mater. Sci. Eng., A486, 85 (2008).
  11. V. Balasubramanian, Mater. Sci. Eng, A480, 397 (2008).
  12. R. P. Dobriyal, B. K. Dhindaw, S. Muthukumaran and S. K. Mukherjee, Mater. Sci. Eng., A477, 243 (2008).
  13. F. Ye, H. Fujii, T. Tsumura and K. Nakata, J. Mater. Sci., 41, 5376 (2006). https://doi.org/10.1007/s10853-006-0169-6
  14. Y. S. Sato, P. Arkom, H. Kokawa, T. W. Nelson and R. J. Steel, Mater. Sci. Eng., A477, 250 (2008).
  15. R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., p.247-249, PWS, Boston, USA (2002).
  16. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, p.178, Elsevier, Oxford, UK (1996).

Cited by

  1. Evaluation of Microstructure and Mechanical Properties of Friction Stir Lap Jointed Inconel 600/SS 400 vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.123