• Title/Summary/Keyword: single gene analysis

Search Result 908, Processing Time 0.03 seconds

TMA-OM(Tissue Microarray Object Model)과 주요 유전체 정보 통합

  • Kim Ju-Han
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2006.02a
    • /
    • pp.30-36
    • /
    • 2006
  • Tissue microarray (TMA) is an array-based technology allowing the examination of hundreds of tissue samples on a single slide. To handle, exchange, and disseminate TMA data, we need standard representations of the methods used, of the data generated, and of the clinical and histopathological information related to TMA data analysis. This study aims to create a comprehensive data model with flexibility that supports diverse experimental designs and with expressivity and extensibility that enables an adequate and comprehensive description of new clinical and histopathological data elements. We designed a Tissue Microarray Object Model (TMA-OM). Both the Array Information and the Experimental Procedure models are created by referring to Microarray Gene Expression Object Model, Minimum Information Specification For In Situ Hybridization and Immunohistochemistry Experiments (MISFISHIE), and the TMA Data Exchange Specifications (TMA DES). The Clinical and Histopathological Information model is created by using CAP Cancer Protocols and National Cancer Institute Common Data Elements (NCI CDEs). MGED Ontology, UMLS and the terms extracted from CAP Cancer Protocols and NCI CDEs are used to create a controlled vocabulary for unambiguous annotation. We implemented a web-based application for TMA-OM, supporting data export in XML format conforming to the TMA DES or the DTD derived from TMA-OM. TMA-OM provides a comprehensive data model for storage, analysis and exchange of TMA data and facilitates model-level integration of other biological models.

  • PDF

Water Extract of Ash Tree (Fraxinus rhynchophylla) Leaves Protects against Paracetamol-Induced Oxidative Damages in Mice

  • Jeon, Jeong-Ryae
    • Food Science and Biotechnology
    • /
    • v.15 no.4
    • /
    • pp.612-616
    • /
    • 2006
  • The protective effect of water extract of ash tree leaves (ALE) against oxidative damages was investigated in paracetamol-induced BALB/c mice. Biochemical analysis of anti-oxidative enzymes, immunoblot analyses of hepatic cytochrome P450 2El (CYP2E1), and the gene expression of tumor necrosis factor (TNF-${\alpha}$) were examined to determine the extract's protective effect and its possible mechanisms. BALB/c mice were divided into three groups: normal, paracetamol-administered, and ALE-pretreated groups. A single dose of paracetamol led to a marked increase in lipid peroxidation as measured by malondialdehyde (MDA). This was associated with a significant reduction in the hepatic antioxidant system, e.g., glutathione (GSH). Paracetamol administration also significantly elevated the expression of CYP2E1, according to immunoblot analysis, and of TNF-${\alpha}$ mRNA in liver. However, ALE pretreatment prior to the administration of paracetamol significantly decreased hepatic MDA levels. ALE restored hepatic glutathione and catalase levels and suppressed the expression of CYP2E1 and TNF-${\alpha}$ observed in inflammatory tissues. Moreover, ALE restored mitochondrial ATP content depleted by the drug administration. These results show that the extract of ash tree leaves protects against paracetamol-induced oxidative damages by blocking oxidative stress and CYP2E1-mediated paracetamol bioactivation.

Isolation of Multi-Abiotic Stress Response Genes to Generate Global Warming Defense Forage Crops

  • Ermawati, Netty;Hong, Jong Chan;Son, Daeyoung;Cha, Joon-Yung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.242-249
    • /
    • 2021
  • Forage crop management is severely challenged by global warming-induced climate changes representing diverse a/biotic stresses. Thus, screening of valuable genetic resources would be applied to develop stress-tolerant forage crops. We isolated two NAC (NAM, ATAF1, ATAF2, CUC2) transcription factors (ANAC032 and ANAC083) transcriptionally activated by multi-abiotic stresses (salt, drought, and cold stresses) from Arabidopsis by microarray analysis. The NAC family is one of the most prominent transcription factor families in plants and functions in various biological processes. The enhanced expressions of two ANACs by multi-abiotic stresses were validated by quantitative RT-PCR analysis. We also confirmed that both ANACs were localized in the nucleus, suggesting that ANAC032 and ANAC083 act as transcription factors to regulate the expression of downstream target genes. Promoter activities of ANAC032 and ANAC083 through histochemical GUS staining again suggested that various abiotic stresses strongly drive both ANACs expressions. Our data suggest that ANAC032 and ANAC083 would be valuable genetic candidates for breeding multi-abiotic stress-tolerant forage crops via the genetic modification of a single gene.

EST Analysis system for panning gene

  • Hur, Cheol-Goo;Lim, So-Hyung;Goh, Sung-Ho;Shin, Min-Su;Cho, Hwan-Gue
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2000.11a
    • /
    • pp.21-22
    • /
    • 2000
  • Expressed sequence tags (EFTs) are the partial segments of cDNA produced from 5 or 3 single-pass sequencing of cDNA clones, error-prone and generated in highly redundant sets. Advancement and expansion of Genomics made biologists to generate huge amount of ESTs from variety of organisms-human, microorganisms as well as plants, and the cumulated number of ESTs is over 5.3 million, As the EST data being accumulate more rapidly, it becomes bigger that the needs of the EST analysis tools for extraction of biological meaning from EST data. Among the several needs of EST analyses, the extraction of protein sequence or functional motifs from ESTs are important for the identification of their function in vivo. To accomplish that purpose the precise and accurate identification of the region where the coding sequences (CDSs) is a crucial problem to solve primarily, and it will be helpful to extract and detect of genuine CD5s and protein motifs from EST collections. Although several public tools are available for EST analysis, there is not any one to accomplish the object. Furthermore, they are not targeted to the plant ESTs but human or microorganism. Thus, to correspond the urgent needs of collaborators deals with plant ESTs and to establish the analysis system to be used as general-purpose public software we constructed the pipelined-EST analysis system by integration of public software components. The software we used are as follows - Phred/Cross-match for the quality control and vector screening, NCBI Blast for the similarity searching, ICATools for the EST clustering, Phrap for EST contig assembly, and BLOCKS/Prosite for protein motif searching. The sample data set used for the construction and verification of this system was 1,386 ESTs from human intrathymic T-cells that verified using UniGene and Nr database of NCBI. The approach for the extraction of CDSs from sample data set was carried out by comparison between sample data and protein sequences/motif database, determining matched protein sequences/motifs that agree with our defined parameters, and extracting the regions that shows similarities. In recent future, in addition to these components, it is supposed to be also integrated into our system and served that the software for the peptide mass spectrometry fingerprint analysis, one of the proteomics fields. This pipelined-EST analysis system will extend our knowledge on the plant ESTs and proteins by identification of unknown-genes.

  • PDF

Development and Validation of Multiplex Polymerase Chain Reaction to Determine Squid Species Based on 16s rRNA Gene (오징어류 종 판별을 위한 다중 유전자 검사법 개발 및 검증)

  • Kim, Hyunsu;Seo, Yong Bae;Choi, Seong-Seok;Kim, Jin-Hee;Shin, Jiyoung;Yang, Ji-Young;Kim, Gun-Do
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.1
    • /
    • pp.43-50
    • /
    • 2015
  • In this study, single PCR and multiplex PCR tests were examined for identification of four types of squid species (giant squid, cuttlefish, octopus, beka squid) purchased from fish market as well as aquatic processed products in Busan. To design the specific primers against each species, the nucleotide sequences of the mitochondrial 16s rRNA gene of Architeuthis dux, Todarodes pacificus, Enteroctopus dofleini, Enteroctopus megalocyathus, Uroteuthis chinensis, Uroteuthis duvauceli, Uroteuthis edulis groups were analyzed for the identification of each species registered in the GeneBank (www.ncbi.nlm.nih.gov) and have been used for comparative analysis. In order to obtain the size variation of amplified fragments on multiplex PCR, we designed KOJ-F, OJ-F, OCT-F, HAN-F, ALLR primers for each species. The optimal PCR conditions and primers were selected for four types of squid species to determine target base sequences in its PCR products. In the case of single PCR, giant squid was only amplified by KOJ-F/ALLR primer; cuttlefish was only amplified by OJ-F/ALLR primer; octopus was only amplified by OCT-F/ALLR primer; and beka squid was only amplified by HAN-F/ALLR primer. For multiplex PCR, the mixture of four kinds of genomic DNA (giant squid, cuttlefish, octopus, beka squid) been prepared as a template and used together with the mixture of KOJ-F/OJ-F/OCT-F/HAN-F/ALLR primers in the reaction. By the multiplex PCR, it is confirmed that four samples are correspond to multiple simultaneous amplicon. Finally, we validated the established methods of multiplex PCR in the aquatic processed products. Although the mitochondrial 16s rRNA primers used in this study was useful as a marker for detection of each species among them, the study indicated that the established multiplex PCR method can be more useful tool for monitoring the processed products.

Efficacy of Duplex-nested PCR and Fluorescent PCR in the Preimplantation Genetic Diagnosis for Duchenne Muscular Dystrophy (근이영양증에 대한 착상전 유전진단에서 Duplex-nested PCR과 Fluorescent PCR 방법의 효용성)

  • Lee, Hyoung-Song;Choi, Hye Won;Lim, Chun Kyu;Park, So Yeon;Kim, Jin Young;Koong, Mi Kyoung;Jun, Jin Hyun;Kang, Inn Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.1
    • /
    • pp.17-26
    • /
    • 2005
  • Objective: Preimplantation genetic diagnosis (PGD) is reserved for couples with a risk of transmitting a serious and incurable disease, and hence avoids the undesirable therapeutic abortion. In this study, we evaluated the efficacy of PGD for Duchenne muscular dystrophy (DMD) cases by the fluorescent PCR with polymorphic linked markers and the conventional duplex-nested PCR methods. Methods: Biopsy of one or two blastomeres was done from the embryos fertilized by ICSI on the third day after fertilization. We performed two cases of PGD-DMD by the duplex-nested PCR for the causative mutation loci and the SRY gene on Y chromosome. The triplex fluorescent PCR for the mutation loci, the SRY gene and the polymorphic microsatellite marker on X chromosome was applied for two cases of PGD-DMD. Results: By the duplex-nested PCR, successful diagnosis rate was 95.5% (21/22), but we could not discriminate the female embryos whether normal or carrier in this X-linked recessive disease. However, the triplex fluorescent PCR method showed 100% (27/27) of successful diagnosis rate, and all female embryos (n=17) were distinguished normal (n=10) from carrier (n=7) embryos. Unaffected and normal embryos were transferred into mother's uterus after diagnosis. A healthy normal male was achieved after PGD with the duplex-nested PCR method and a twin, a male and a female, were delivered with triplex fluorescent PCR method. The normality of dystrophin gene was confirmed by amniocentesis and postnatal genetic analysis in all offsprings. Conclusion: The fluorescent PCR with polymorphic marker might be useful in improving the specificity and reliability of PGD for single gene disorders.

Association study analysis of CD9 as candidate gene for Duroc pig sperm motility and kinematic characteristics (두록 정자 운동학적 특성과 후보유전자 CD9 유전자와의 연관성 분석)

  • Jeong, Yong-dae;Jeong, Jin-Young;Kim, Ki-Hyun;Cho, Eun-Seok;Yu, Dong-Jo;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Sungk-won;Sa, Soo-Jin;Woo, Jae-Seok
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.281-285
    • /
    • 2016
  • Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as a candidate gene to investigate Duroc boar semen motility and kinematic characteristics. This study was performed to investigatetheir association with semen motility and kinematic characteristics. DNA samples from 96 Duroc pigs with records of sperm motility and kinematic characteristics [Total motile spermatozoa (MOT, $82.27{\pm}5.58$), Curvilinear velocity(VCL, $68.37{\pm}14.58$), Straight-line velocity(VSL, $29.06{\pm}6.58$), the ratio between VSL and VCL(LIN, $47.36{\pm}8.42$), Amplitude of Lateral Head displacement(ALH, $2.88{\pm}0.70$)] were used in present study. A single nucleotide polymorphism (g.358A>T) in intron 6 was associated with MOT, VCL, VAP and ALH in Duroc population (p<0.05). Therefore, we suggest that the porcine CD9 may be used as a molecular marker for Duroc boar semen quality, although its functional effect was not clear yet. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts, and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.

DNA Polymorphisms in SREBF1 and FASN Genes Affect Fatty Acid Composition in Korean Cattle (Hanwoo)

  • Bhuiyan, M.S.A.;Yu, S.L.;Jeon, J.T.;Yoon, D.;Cho, Y.M.;Park, E.W.;Kim, N.K.;Kim, K.S.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.765-773
    • /
    • 2009
  • Sterol regulatory element binding factor 1 (SREBF1) and fatty acid synthase (FASN) genes play an important role in the biosynthesis of fatty acids and cholesterol, and in lipid metabolism. This study used polymorphisms in the intron 5 of bovine SREBF1 and in the thioesterase (TE) domain of FASN genes to evaluate their associations with beef fatty acid composition. A previously identified 84-bp indel (L: insertion/long type and S: deletion/short type) of the SREBF1 gene in Korean cattle had significant associations with the concentration of stearic (C18:0), linoleic (C18:2) and polyunsaturated fatty acids (PUFA). The stearic acid concentration was 6.30% lower in the SS than the LL genotype (p<0.05), but the linoleic and PUFA contents were 11.06% and 12.20% higher in SS compared to LL (p<0.05). Based on the sequence analysis, five single nucleotide polymorphisms (SNPs) g.17924G>A, g.18043C>T, g.18440G>A, g.18529G>A and g.18663C>T in the TE domain of the FASN gene were identified among the different cattle breeds studied. Among these, only g.17924 G>A and g.18663C>T SNPs were segregating in the Hanwoo population. The g.17924G>A SNP is a non-synonymous mutation (thr2264ala) and was significantly associated with the contents of palmitic (C16:0) and oleic acid (C18:1). The oleic acid concentration was 3.18% and 2.79% higher in Hanwoo with the GG genotype than the AA and AG genotypes, respectively (p<0.05), whereas the GG genotype had 3.8% and 4.01% lower palmitic acid than in those cattle with genotype AA and AG, respectively (p<0.05). Tissue expression data showed that SREBFI and FASN genes were expressed in a variety of tissues though they were expressed preferentially in different muscle tissues. In conclusion, the 84-bp indel of SREBF1 and g.17924G>A SNP of the FASN gene can be used as DNA markers to select Hanwoo breeding stock for fatty acid composition.

Characterization, Cloning and Expression of the Ferritin Gene from the Korean Polychaete, Periserrula leucophryna

  • Jeong Byeong Ryong;Chung Su-Mi;Baek Nam Joo;Koo Kwang Bon;Baik Hyung Suk;Joo Han-Seung;Chang Chung-Soon;Choi Jang Won
    • Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.54-63
    • /
    • 2006
  • Ferritin is a major eukaryotic protein and in humans is the protein of iron storage. A partial gene fragment of ferritin (255 bp) taken from the total RNA of Periserrula leucophryna, was amplified by RT-PCR using oligonucleotide primers designed from the conserved metal binding domain of eukaryotic ferritin and confirmed by DNA sequencing. Using the $^{32}P-labeled$ partial ferritin cDNA fragment, 28 different clones were obtained by the screening of the P. leucophryna cDNA library prepared in the Uni-ZAP XR vector, sequenced and characterized. The longest clone was named the PLF (Periserrula leucophryna ferritin) gene and the nucleotide and amino acid sequences of this novel gene were deposited in the GenBank databases with accession numbers DQ207752 and ABA55730, respectively. The entire cDNA of PLF clone was 1109 bp (CDS: 129-653), including a coding nucleotide sequence of 525 bp, a 5' -untranslated region of 128 bp, and a 3'-noncoding region of 456 bp. The 5'-UTR contains a putative iron responsive element (IRE) sequence. Ferritin has an open reading frame encoding a polypeptide of 174 amino acids including a hydrophobic signal peptide of 17 amino acids. The predicted molecular weights of the immature and mature ferritin were calculated to be 20.3 kDa and 18.2 kDa, respectively. The region encoding the mature ferritin was subcloned into the pT7-7 expression vector after PCR amplification using the designed primers and included the initiation and termination codons; the recombinant clones were expressed in E. coli BL21(DE3) or E. coli BL21(DE3)pLysE. SDS-PAGE and western blot analysis showed that a ferritin of approximately 18 kDa (mature form) was produced and that by iron staining in native PAGE, it is likely that the recombinant ferritin is correctly folded and assembled into a homopolymer composed of a single subunit.

Association of CAST Gene Polymorphisms with Carcass and Meat Quality Traits in Chinese Commercial Cattle Herds

  • Li, Jiao;Zhang, Lu-Pei;Gan, Qian-Fu;Li, Jun-Ya;Gao, Hui-Jiang;Yuan, Zheng-Rong;Gao, Xue;Chen, Jin-Bao;Xu, Shang-Zhong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.11
    • /
    • pp.1405-1411
    • /
    • 2010
  • Calpastatin (CAST), an endogenous inhibitor of the calpains, plays an important role in post-mortem tenderization of meat. The objectives of this study were to investigate single nucleotide polymorphisms (SNPs) in the bovine CAST gene and association with carcass and meat quality traits. A total of 212 cattle from commercial herds were tested in this study including 2 pure introduced breeds, 4 cross populations, and 3 pure Chinese native breeds. Five SNPs were identified at position 2959 (A/G), 2870 (G/A), 3088 (C/T), 3029 (G/A) and 2857 (C/T) in the CAST gene (GenBank Accession No. AF159246). Allele frequencies of SNP2959 and SNP2870 were 0.701 (A) and 0.462 (A), respectively. A general linear model was used to evaluate the associations between the two markers and 7 traits. The results showed that both SNP2959 and SNP2870 were significantly (p<0.01) associated with the Warner-Bratzler shear force (WBSF), while they had no significant association with the other 6 traits in the whole population. However, in Chinese native pure breeds, only SNP2870 had significant association with WBSF (p<0.05). The simultaneous analysis of two-marker genotype effects indicated animals containing the A/G haplotype (A for SNP2959 and G for SNP2870) tended to have lower shear force than those containing the G/A haplotype, and, especially, animals homozygous for the A/G haplotype had approximately 2 kg lower shear force than those homozygous for the G/A haplotype (p<0.01). These results suggested that both markers may be effective for the marker-assisted selection of meat quality traits in Chinese commercial herds, especially SNP2870 which can be used for Chinese native cattle.