DOI QR코드

DOI QR Code

Development and Validation of Multiplex Polymerase Chain Reaction to Determine Squid Species Based on 16s rRNA Gene

오징어류 종 판별을 위한 다중 유전자 검사법 개발 및 검증

  • Kim, Hyunsu (Department of Microbiology, Pukyong National University) ;
  • Seo, Yong Bae (Department of Microbiology, Pukyong National University) ;
  • Choi, Seong-Seok (Department of Microbiology, Pukyong National University) ;
  • Kim, Jin-Hee (Department of Food Science & Technology, Pukyong National University) ;
  • Shin, Jiyoung (Department of Food Science & Technology, Pukyong National University) ;
  • Yang, Ji-Young (Department of Food Science & Technology, Pukyong National University) ;
  • Kim, Gun-Do (Department of Microbiology, Pukyong National University)
  • Received : 2014.09.05
  • Accepted : 2014.11.12
  • Published : 2015.03.30

Abstract

In this study, single PCR and multiplex PCR tests were examined for identification of four types of squid species (giant squid, cuttlefish, octopus, beka squid) purchased from fish market as well as aquatic processed products in Busan. To design the specific primers against each species, the nucleotide sequences of the mitochondrial 16s rRNA gene of Architeuthis dux, Todarodes pacificus, Enteroctopus dofleini, Enteroctopus megalocyathus, Uroteuthis chinensis, Uroteuthis duvauceli, Uroteuthis edulis groups were analyzed for the identification of each species registered in the GeneBank (www.ncbi.nlm.nih.gov) and have been used for comparative analysis. In order to obtain the size variation of amplified fragments on multiplex PCR, we designed KOJ-F, OJ-F, OCT-F, HAN-F, ALLR primers for each species. The optimal PCR conditions and primers were selected for four types of squid species to determine target base sequences in its PCR products. In the case of single PCR, giant squid was only amplified by KOJ-F/ALLR primer; cuttlefish was only amplified by OJ-F/ALLR primer; octopus was only amplified by OCT-F/ALLR primer; and beka squid was only amplified by HAN-F/ALLR primer. For multiplex PCR, the mixture of four kinds of genomic DNA (giant squid, cuttlefish, octopus, beka squid) been prepared as a template and used together with the mixture of KOJ-F/OJ-F/OCT-F/HAN-F/ALLR primers in the reaction. By the multiplex PCR, it is confirmed that four samples are correspond to multiple simultaneous amplicon. Finally, we validated the established methods of multiplex PCR in the aquatic processed products. Although the mitochondrial 16s rRNA primers used in this study was useful as a marker for detection of each species among them, the study indicated that the established multiplex PCR method can be more useful tool for monitoring the processed products.

본 연구에서는 오징어류에 해당하는 대왕오징어, 오징어, 문어, 한치 및 이를 이용한 가공식품에 대해서 분자생물학적 기법을 활용한 시험법을 검토하였다. 시료 중 원료성분 확인을 위하여 오징어류 4종에 대해 최적의 종 특이 프라이머를 디자인하였으며, 시료로부터 직접 genomic DNA를 추출하여 PCR을 실시하였다. PCR 수행과정에서 반응을 저해하는 염 성분을 제거하기 위하여 증류수를 이용하여 3~4회 세척 후 PCR을 실시한 결과, Single PCR의 경우 대왕오징어(552 bp), 오징어(463 bp), 문어(247 bp), 한치(354 bp)에 해당하는 종 특이적인 증폭산물을 확인하였으며, Multiplex PCR 의 경우 서로 다른 종 사이의 교차반응없이 동시다발적으로 증폭이 일어남을 확인할 수 있었다. 또한 이들 4종에 대해 PCR 민감도를 조사한 결과, 모두 약 $0.1ng/{\mu}l$의 농도까지 검출이 가능함을 확인하였으며 multiplex PCR의 경우 약 $0.25ng/{\mu}l$의 농도까지 검출이 가능함을 확인하였다. 이를 이용하여 오징어류가 함유된 수산물 가공식품 8건에 대해 적용성을 검토한 결과, 모든 시료에서 유효한 결과를 확인할 수 있었다. 따라서 본 연구에서 제작된 오징어류 4종에 대한 종 특이적 프라이머는 생물 상태뿐만 아니라 수산물 가공식품에 대해서도 이를 판별할 수 있어 식품안전관리에 활용할 수 있을 것으로 기대된다.

Keywords

References

  1. Nakamura, Y. and Sakurai, Y.: Validation of daily growth increments in statoliths of Japanese common squid, Todarodes pacificus. Nip. Sui. Gak., 57, 2007-2011 (1991). https://doi.org/10.2331/suisan.57.2007
  2. 소원현, 김하균: 한국 수산물 가공식품기업의 이미지가 제품 평가 및 구매의도에 미치는 영향. J. Fish. Bus. Adm., 44(1), 1-14 (2013). https://doi.org/10.12939/FBA.2013.44.1.001
  3. 임설매, 김기수: 패널자료를 이용한 중국 수산물소비지출에 영향을 미치는 요인에 관한 연구. J. Fish. Bus. Adm., 44(2), 019-033 (2013). https://doi.org/10.12939/FBA.2013.44.2.019
  4. Lee, G.-I. and Kim, S.Y.: An Analysis of Consumption of Fishery Products, "Korean Rural Economic Institute, 26(3), 21-38 (2003).
  5. Ballin, N.Z., Vogensen, F.K. and Karlsson, A.H.: Species determination-Can we detect and quantify meat adulteration? Meat Science, 83, 165-174 (2009). https://doi.org/10.1016/j.meatsci.2009.06.003
  6. 식품의약품안전처: 식품 중 사용원료 진위 판별 지침서(II), In; 유전자분석법 활용, pp. 16-90. (2012).
  7. Ha, J.C., Jung, W.T., Nam, Y.S. and Moon, T.W.: PCR identification of ruminant tissue in raw and heat-treated meat meals. J. Food Prot., 69, 2241-2247 (2006).
  8. Martin, I., Garcia, T., Fajardo, V., Lopez-Calleja, I., Rojas, M., Pavon, M.A., Hernandez, P.E., Gonzalez, I. and Martin, R.: Detection of chicken, turkey, duck, and goose tissues in feedstuffs using species-specific polymerase chain reaction. J. Anim. Sci., 85, 452-458 (2007a). https://doi.org/10.2527/jas.2006-350
  9. Martin, I., Garcia, T., Fajardo, V., Rojas, M., Hernandez, P.E., Gonzalez, I. and Martin, R.: Technical note: Detection of cat, dog, and rat or mouse tissues in food and animal feed using species-specific polymerase chain reaction. J. Anim. Sci., 85, 2734-2739 (2007b). https://doi.org/10.2527/jas.2007-0048
  10. Tanabe, S., Miyauchi, E., Muneshige, A., Mio, K., Sato, C. and Sato, M.: PCR method of detecting pork in foods for verifying allergen labeling and for identifying hidden pork ingredients in processed foods. Biosci. Biotechnol. Biochem., 71, 1663-1667. (2007). https://doi.org/10.1271/bbb.70075
  11. 박종근, 신기현, 신성철, 정구용, 정의룡: 미토콘드리아 12S rRNA 유전자의 종 특이적 PCR-RFLP fingerprint를 이용한 식육 원료의 판별. 한국축산식품학회지, 27, 209-215. (2007).
  12. Choi, W.S., Jeong, J.W., Kim, S.O., Kim, G.Y., Kim, B.W., Kim, C.M., Seo, Y.B., Kim, W.Y., Lee, S.Y., Jo, K.H., Choi, Y.J., Choi, Y.H. and Kim, G.D.: Anti-inflammatory potential of peat moss etracts in lipopolysaccharide-stimulasted RAW 264.7 macrophages. Int. J. Mol Med. Doi 10, 3892 (2014).
  13. Jung, H.I., Jo, M.J., Kim, H.R., Choi, Y.H. and Kim, G.D.: Extract of saccharina japonica induces apoptosis companied by cell cycle arrest and endoplasmic reticulum stress in SKHep1 human hepatocellular carcinoma cells. Asian Pac J cancer Prev 15(7), 2993-2999 (2014). https://doi.org/10.7314/APJCP.2014.15.7.2993
  14. Seong, Y.A., Shin, P.G., Yoon, J.S., Yadunandam, A.K. and Kim, G.D.: Induction of the endoplasmic reticulum stress and autophagy in human lung carcinoma A549 cells by anacardic acid. Cell Biochem Biophys. 68(2), 369-377 (2014). https://doi.org/10.1007/s12013-013-9717-2
  15. 김재환, 이재은, 유상진, 박영두, 김혜영: Multiplex PCR을 이용한 유전자변형 카네이션의 검출법. Kor. J. Hort. Sci. Technol. 28(2), 275-280 (2010).
  16. Aida, A.A., Che Man, Y.B., Wong, C.M.V.L., Raha, A.R. and Son, R.: Analysis of raw meats and fats of pig using polymerase chain reaction for halal authentication. Meat Sci., 79, 47-52 (2005).
  17. 박용춘, 진상욱, 임지영, 김규헌, 이재황, 조태용, 이화정, 한상배, 이상재, 이광호, 윤혜성: 일반 프라이머를 이용한 PCR의 식품원료 진위 판별에 적용. J. Fd Hyg. Safety 27, 317-324 (2012). https://doi.org/10.13103/JFHS.2012.27.3.317
  18. 허은정, 고은경, 서건호, 김영조, 박현정, 위성환, 문진산: 국내 유통 식육 및 식육가공품에서 축종감별을 위한 PCR 및 ELISA 검사법 검증. J. Fd Hyg. Safety 29, 158-163 (2014). https://doi.org/10.13103/JFHS.2014.29.2.158
  19. Espineira, M., Vieites, J.M., and Santaclara F.J.: Species authentication of octopus, cuttlefish, bobtail and bottle squids (families Octopodidae, Sepiidae and Sepiolidae) by FINS methodology in seafoods. Food Chem. 121, 527-532 (2010). https://doi.org/10.1016/j.foodchem.2009.12.042
  20. Santaclara F.J., Espineira, M., and Vieites, J.M.: Genetic Identification of Squids (Families Ommastrephidae and Loliginidae) by PCR-RFLP and FINS Methodologies. J. Agric. Food Chem. 55(24), 9914-9920 (2007).
  21. Chapela M.J., Sotelo C.G., Calo-Mata P., Perez-Martin R.I., Rehbein H., Hold G.L., Quinteiro J., Rey-Mendez M., Rosa C. and Santos A.T.: Identification of Cephalopod Species (Ommastrephidae and Loliginidae) in Seafood Products by Forensically Informative Nucleotide Sequencing (FINS). Journal of Food science. 67(5), 1672-1676 (2002). https://doi.org/10.1111/j.1365-2621.2002.tb08703.x

Cited by

  1. Development and Validation of Quick and Accurate Cephalopods Grouping System in Fishery Products by Real-time Quantitative PCR Based on Mitochondrial DNA vol.33, pp.4, 2018, https://doi.org/10.13103/JFHS.2018.33.4.280