• Title/Summary/Keyword: single chart

Search Result 129, Processing Time 0.019 seconds

A comparison of single charts for non-normal data (비정규성 데이터에 대한 단일 관리도들의 비교)

  • Kang, Myunggoo;Lee, Jangtaek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.729-738
    • /
    • 2015
  • In this paper, we compare the robustness to the assumption of normality of the single control charts to control the mean and variance simultaneously. The charts examined were semicircle control chart, max chart and MSE chart with Shewhart individuals control charts. Their in-control and out-of-control performance were studied by simulation combined with computation. We calculated false alarm rate to compare among single charts by changing subgroup size and shifting mean of quality characteristics. It turns out that max chart is more robust than any of the others if the process is in-control. In some cases max chart and MSE chart are more robust than others if the process is out-of-control.

Monitoring social networks based on transformation into categorical data

  • Lee, Joo Weon;Lee, Jaeheon
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.487-498
    • /
    • 2022
  • Social network analysis (SNA) techniques have recently been developed to monitor and detect abnormal behaviors in social networks. As a useful tool for process monitoring, control charts are also useful for network monitoring. In this paper, the degree and closeness centrality measures, in which each has global and local perspectives, respectively, are applied to an exponentially weighted moving average (EWMA) chart and a multinomial cumulative sum (CUSUM) chart for monitoring undirected weighted networks. In general, EWMA charts monitor only one variable in a single chart, whereas multinomial CUSUM charts can monitor a categorical variable, in which several variables are transformed through classification rules, in a single chart. To monitor both degree centrality and closeness centrality simultaneously, we categorize them based on the average of each measure and then apply to the multinomial CUSUM chart. In this case, the global and local attributes of the network can be monitored simultaneously with a single chart. We also evaluate the performance of the proposed procedure through a simulation study.

Economic-Statistical Design of Double Sampling T2 Control Chart under Weibull Failure Model (와이블 고장모형 하에서의 이중샘플링 T2 관리도의 경제적-통계적 설계 (이중샘플링 T2 관리도의 경제적-통계적 설계))

  • Hong, Seong-Ok;Lee, Min-Koo;Lee, Jooho
    • Journal of Korean Society for Quality Management
    • /
    • v.43 no.4
    • /
    • pp.471-488
    • /
    • 2015
  • Purpose: Double sampling $T^2$ chart is a useful tool for detecting a relatively small shift in process mean when the process is controlled by multiple variables. This paper finds the optimal design of the double sampling $T^2$ chart in both economical and statistical sense under Weibull failure model. Methods: The expected cost function is mathematically derived using recursive equation approach. The optimal designs are found using a genetic algorithm for numerical examples and compared to those of single sampling $T^2$ chart. Sensitivity analysis is performed to see the parameter effects. Results: The proposed design outperforms the optimal design of the single sampling $T^2$ chart in terms of the expected cost per unit time and Type-I error rate for all the numerical examples considered. Conclusion: Double sampling $T^2$ chart can be designed to satisfy both economic and statistical requirements under Weibull failure model and the resulting design is better than the single sampling counterpart.

A Comparative Study between Korean Standard Eye Test and Test Chart 2000 Pro (Test Chart 2000 Pro와 한국 표준 검안법의 일치도 비교 연구)

  • Kang, Ji-Hun;Kim, Dal-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.1
    • /
    • pp.69-80
    • /
    • 2009
  • Purpose: We investigated validity of a monitor-based computer eye test program, Test Chart 2000 Pro (developed by Thomson Software Solutions, UK). Methods: We chose ten common eye tests of the Test Chart 2000 Pro and Korean Standard Eye Test, applying them to same subject groups each by each, followed by comparison and analyses of agreement degree of the results. Results: Among the ten eye tests, Snellen Chart, Cross-cyl target, Duochrome test, Fan and Block test, and Random dot stereograms showed statistically significant agreement between both the Korean standard eye test method and Test Chart 2000 Pro. On the other hand, some disagreements were found between the two eye test methods in LogMAR Chart, Single Letter Chart, Phoria Test, Fixation Disparity Test, and Worth 4 Dot Test. Conclusions: Comparing to the Korean Standard Eye Test that consists of Han eye chart and Phoroptor, validity of the Test Chart 2000 Pro is not so high. Further improvements of the Test Chart 2000 Pro in accuracy are required.

  • PDF

Bootstrap $C_{pp}$ Multiple Process Performance Analysis Chart (붓스트랩 $C_{pp}$ 다공정 수행분석차트)

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.38 no.2
    • /
    • pp.171-179
    • /
    • 2010
  • Pearn et al.(2002) supposed the $C_{pp}$ multiple process performance analysis chart. This chart displays multiple processes with the process variation and process departure on one single chart. But, this chart can not display the distribution of the process variation and process departure and is inappropriate for processes with non-normal distributions. With bootstrapping method, we can display the distribution of the process variation and process departure on the $C_{pp}$ multiple process performance analysis chart.

Bootstrap $C_{pp}$ Multiple Process Performance Analysis Chart (붓스트랩 $C_{pp}$ 다공정 수행분석차트)

  • Jang, Dae-Heung;Kim, Dae-Hak
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2007.04a
    • /
    • pp.287-296
    • /
    • 2007
  • Pearn et al.(2002) supposed the $C_{pp}$ multiple process performance analysis chart. This chart display multiple processes with the process variation and process departure on one single chart. But, this chart can not display the distribution of the process variation and process departure. With bootstrapping method, we can display the distribution of the process variation and process departure on the $C_{pp}$ multiple process performance analysis chart.

  • PDF

Multivariate Process Control Chart for Controlling the False Discovery Rate

  • Park, Jang-Ho;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.385-389
    • /
    • 2012
  • With the development of computer storage and the rapidly growing ability to process large amounts of data, the multivariate control charts have received an increasing attention. The existing univariate and multivariate control charts are a single hypothesis testing approach to process mean or variance by using a single statistic plot. This paper proposes a multiple hypothesis approach to developing a new multivariate control scheme. Plotted Hotelling's $T^2$ statistics are used for computing the corresponding p-values and the procedure for controlling the false discovery rate in multiple hypothesis testing is applied to the proposed control scheme. Some numerical simulations were carried out to compare the performance of the proposed control scheme with the ordinary multivariate Shewhart chart in terms of the average run length. The results show that the proposed control scheme outperforms the existing multivariate Shewhart chart for all mean shifts.

A GLR Chart for Monitoring a Zero-Inflated Poisson Process (ZIP 공정을 관리하는 GLR 관리도)

  • Choi, Mi Lim;Lee, Jaeheon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The number of nonconformities in a unit is commonly modeled by a Poisson distribution. As an extension of a Poisson distribution, a zero-inflated Poisson(ZIP) process can be used to fit count data with an excessive number of zeroes. In this paper, we propose a generalized likelihood ratio(GLR) chart to monitor shifts in the two parameters of the ZIP process. We also compare the proposed GLR chart with the combined cumulative sum(CUSUM) chart and the single CUSUM chart. It is shown that the overall performance of the GLR chart is comparable with CUSUM charts and is significantly better in some cases where the actual directions of the shifts are different from the pre-specified directions in CUSUM charts.

Discrimination of Out-of-Control Condition Using AIC in (x, s) Control Chart

  • Takemoto, Yasuhiko;Arizono, Ikuo;Satoh, Takanori
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2013
  • The $\overline{x}$ control chart for the process mean and either the R or s control chart for the process dispersion have been used together to monitor the manufacturing processes. However, it has been pointed out that this procedure is flawed by a fault that makes it difficult to capture the behavior of process condition visually by considering the relationship between the shift in the process mean and the change in the process dispersion because the respective characteristics are monitored by an individual control chart in parallel. Then, the ($\overline{x}$, s) control chart has been proposed to enable the process managers to monitor the changes in the process mean, process dispersion, or both. On the one hand, identifying which process parameters are responsible for out-of-control condition of process is one of the important issues in the process management. It is especially important in the ($\overline{x}$, s) control chart where some parameters are monitored at a single plane. The previous literature has proposed the multiple decision method based on the statistical hypothesis tests to identify the parameters responsible for out-of-control condition. In this paper, we propose how to identify parameters responsible for out-of-control condition using the information criterion. Then, the effectiveness of proposed method is shown through some numerical experiments.

Optimal design of a nonparametric Shewhart-Lepage control chart (비모수적 Shewhart-Lepage 관리도의 최적 설계)

  • Lee, Sungmin;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.339-348
    • /
    • 2017
  • One of the major issues of statistical process control for variables data is monitoring both the mean and the standard deviation. The traditional approach to monitor these parameters is to simultaneously use two seperate control charts. However there have been some works on developing a single chart using a single plotting statistic for joint monitoring, and it is claimed that they are simpler and may be more appealing than the traditonal one from a practical point of view. When using these control charts for variables data, estimating in-control parameters and checking the normality assumption are the very important step. Nonparametric Shewhart-Lepage chart, proposed by Mukherjee and Chakraborti (2012), is an attractive option, because this chart uses only a single control statistic, and does not require the in-control parameters and the underlying continuous distribution. In this paper, we introduce the Shewhart-Lepage chart, and propose the design procedure to find the optimal diagnosis limits when the location and the scale parameters change simultaneously. We also compare the efficiency of the proposed method with that of Mukherjee and Chakraborti (2012).