References
- Chakraborti, S., Human, S. W. and Graham, M. A. (2010). Nonparametric (distribution-free) quality control charts. In Handbook of Methods and Applications of Statistics: Engineering, Quality Control, and Physical Sciences, edited by N. Balakrishnan, John Wiley & Sons, Inc., New York, 298-329.
- Chao, M. T. and Cheng, S. W. (1996). Semicircle control chart for variables data. Quality Engineering, 8, 441-446. https://doi.org/10.1080/08982119608904646
-
Chen, G. and Cheng, S. W. (1998). Max-chart: Combining
$\bar{X}$ and S chart. Statistica Sinica, 8, 263-271. - Chen G., Cheng, S. and Xie, H. (2001). Monitoring process mean and variability with one EWMA chart. Journal of Quality Technology, 33, 223-233. https://doi.org/10.1080/00224065.2001.11980069
- Cheng, S. W. and Thaga, K. (2006). Single variables control charts: An overview. Quality and Reliability Engineering International, 22, 811-820. https://doi.org/10.1002/qre.730
- Choi, H. Y. and Cho, G.-Y. (2016). Multivariate CUSUM control charts for monitoring the covariance matrix. Journal of the Korean Data & Information Science Society, 27, 539-548. https://doi.org/10.7465/jkdi.2016.27.2.539
- Costa, A. F. B. and Rahim, M. A. (2004). Monitoring process mean and variability with one non-central chi-square chart. Journal of Applied Statistics, 31, 1171-1183. https://doi.org/10.1080/0266476042000285503
- Hwang, C. (2016). Multioutput LS-SVR based residual MCUSUM control chart for autocorrelated process. Journal of the Korean Data & Information Science Society, 27, 523-530. https://doi.org/10.7465/jkdi.2016.27.2.523
-
Jones, L. and Case, K. (1981). Economic design of a joint
$\bar{X}$ and R chart. IIE Transactions, 13, 182-195. - Jung, S. H. and Lee, J. (2008). Procedures for monitoring the process mean and variance with one control chart. The Korean Journal of Applied Statistics, 21, 509-521. https://doi.org/10.5351/KJAS.2008.21.3.509
- Memar, A. O. and Niaki, S. T. A. (2010). The max EWMAMS control chart for joint monitoring of process mean and variance for individual observations. Quality and Reliability Engineering International, 27, 499-514.
- Montgomery, D. C. (2013). Statistical quality control: A modern introduction, 7th Ed., John Wiley & Sons, Inc., Hoboken, NJ.
- Mukherjee, A. and Chakraborti, S. (2012). A distribution-free control chart for the joint monitoring of location and scale. Quality and Reliability Engineering International, 28, 335-352. https://doi.org/10.1002/qre.1249
-
Rahim, M. A. and Costa, A. F. B. (2000). Joint economic design of
$\bar{X}$ and R charts under Weibull shock models. International Journal of Production Research, 38, 2871-2889. https://doi.org/10.1080/00207540050117341 - Reynolds, M. R., Jr. and Stoumbos, Z. G. (2001). Individuals control schemes for monitoring the mean and variance of processes subject to drifts. Stochastic Analysis and Applications, 19, 863-892. https://doi.org/10.1081/SAP-120000226
- Reynolds, M. R., Jr. and Stoumbos, Z. G. (2006). Comparisons of some exponentially weighted moving average control charts for monitoring the process mean and variance. Technometrics, 48, 550-567. https://doi.org/10.1198/004017006000000255
-
Saniga, E. M. (1989). Economic statistical control-chart designs with an application to
$\bar{X}$ and R charts. Technometrics, 31, 313-320. - Song, M. S., Park, C. S. and Kim, H. G. (2016). Nonparametric statistics with R, Free Academy, Paju, Gyeonggi-Do.
- Zhang, J., Zou, C. and Wang, Z. (2010). A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International, 26, 63-73. https://doi.org/10.1002/qre.1036