• 제목/요약/키워드: single cell cytotoxicity

검색결과 76건 처리시간 0.027초

Protective Effect of Green Tea Extract and EGCG on Ethanol-induced Cytotoxicity and DNA Damage in NIH/3T3 and HepG2 Cells

  • Kim, Nam Yee;Kim, Hyun Pyo;Heo, Moon Young
    • 한국식품위생안전성학회지
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2016
  • 본 연구의 목적은 NIH3T3와 HepG2 세포에서 에탄올 유도 세포독성 및 유전독성에 대하여 녹차엑기스(GTE)와 epigallocatechin-3-gallate (EGCG)의 보호작용을 평가하는데 있다. 세포생존율은 MTT assay를 실시하였으며 DNA 손상도는 Comet assay로 실시한 결과 에탄올은 농도의존적인 세포독성과 유전독성을 나타내었다. 한편 GTE와 EGCG는 에탄올 유도 세포독성 및 DNA 손상에 대하여 유의성 있는 억제효과를 나타내었으며 DPPH시험과 LDL oxidation 및 8OH-2'dG 생성시험에서 항산화효과를 나타내었다. 한편 녹차성분 함유 시판 리큐르주도 순수 에탄올에 비하여 세포독성억제 및 DNA 손상억제효과를 나타내었다. 이상의 시험결과 GTE와 함유 EGCG는 항산화성 유전독성억제기전을 통한 에탄올독성저감 물질로 판단된다.

전통 메주에서 분리된 단독균으로 제조한 메주추출물의 혈액암세포에 대한 저해효과 (Inhibitive Effects of Meju Extracts Made with a Single Inoculum of the Fungi Isolated from the Traditional Meju on the Human Leukemia Cell Line)

  • 한정;김현정;이상선;이인선
    • 한국균학회지
    • /
    • 제27권4호통권91호
    • /
    • pp.312-317
    • /
    • 1999
  • 우리나라 중요한 식품 원료인 전통 매주로부터 분리한 단독균의 접종 메주의 암세포 저해효과를 검색하기 위하여, 민간유래의 혈액암 세포주에 대한 저해활성을 MTT assay로 분석하였다. 먼저 전통 메주로부터 21종의 단독균을 분리한 후 각각 접종하여 발효된 단독균의 메주시료를 조제한 다음 80% methanol로 추출하였다. 메주 메탄올추출물은 혈액암세포중 HL60에서는 다소 낮은 성장 저해효과를 보였으나, U937과 Jurkat cell에서는 저해효과가 큰 것으로 나타났다. 특히 Mucor속과 Absidia속 Aspergillus속으로 제조된 메주들에서 이들 혈액암세포에 대해 저해효과가 큰 것으로 나타났다. 그러나 모든 메주 메탄올추출물들은 인간의 정상 lymphocyte에서 대해서는 90% 이상의 높은 생존율을 나타내어 정상 세포에 대한 성장 저해 효과가 거의 없음을 보며주었다. 이는 단독균의 메주시료가 가지는 세포독성이 암세포에 대한 특이적인 작용인 것으로 나타났다.

  • PDF

Pleiotropic Effects of Caffeine Leading to Chromosome Instability and Cytotoxicity in Eukaryotic Microorganisms

  • Chung, Woo-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.171-180
    • /
    • 2021
  • Caffeine, a methylxanthine analog of purine bases, is a compound that is largely consumed in beverages and medications for psychoactive and diuretic effects and plays many beneficial roles in neuronal stimulation and enhancement of anti-tumor immune responses by blocking adenosine receptors in higher organisms. In single-cell eukaryotes, however, caffeine somehow impairs cellular fitness by compromising cell wall integrity, inhibiting target of rapamycin (TOR) signaling and growth, and overriding cell cycle arrest caused by DNA damage. Among its multiple inhibitory targets, caffeine specifically interacts with phosphatidylinositol 3-kinase (PI3K)-related kinases causing radiosensitization and cytotoxicity via specialized intermediate molecules. Caffeine potentiates the lethality of cells in conjunction with several other stressors such as oxidants, irradiation, and various toxic compounds through largely unknown mechanisms. In this review, recent findings on caffeine effects and cellular detoxification schemes are highlighted and discussed with an emphasis on the inhibitory interactions between caffeine and its multiple targets in eukaryotic microorganisms such as budding and fission yeasts.

Benzo(a)pyrene 유도 DNA 손상에 대한 Genistein과 청국장추출물의 보호효과 (Protective Effect of Genistein and Korean Fermented Soybean (Chungkookjang) Extract against Benzo(a)pyrene Induced DNA Damage in HepG2 Cells)

  • 송은정;김현표;허문영
    • 약학회지
    • /
    • 제52권5호
    • /
    • pp.376-383
    • /
    • 2008
  • Chungkookjang (CKJ) is a fermented soybean product and one of favorite traditional foods in Korea. In this study, the alcoholic extract from Korean fermented soybean (CKJ) and its one of major flavonoids, genistein were evaluated for their protective effect against B(a)P induced cytotoxicity and DNA damage in HepG2 cells. CKJ extract and genistein decreased B(a)P-induced cell cytotoxicity. CKJ extract inhibited DNA single strand breaks evaluated by single cell gel electrophoresis. From RT-PCR study, it was revealed that CKJ extract decrease DNA damage induced in HepG2 cells expressing CYP1A1 and 1A2 by B(a)P. The metabolizing activities of CYP1A1 and CYP1A2, as measured by the 7-alkoxy resorufin O-deethylation (AROD) assay, showed that CKJ extract and genistein inhibited CYP1A1 and CYP1A2 activities. Genistein may contribute to these biological effects of CKJ extract at least in part. All these results indicate that CKJ extract and genistein may be useful for protection against B(a)P-induced cytotoxicity and DNA damage. Therefore, the alcoholic extract of Korean fermented soybean (CKJ) is suggested to be promising functional food which can prevent the cellular genotoxicity of dietary and lifestyle related carcinogens.

Resin-Based Root Canal Sealer의 생체 적합성 평가 (The Biocompatibility Evaluation of Resin-Based Root Canal Sealers)

  • 김형선;전성민;문종현;이광원;유미경
    • 구강회복응용과학지
    • /
    • 제23권1호
    • /
    • pp.95-104
    • /
    • 2007
  • I. Objective The primary requirement of an endodontic root canal sealer is the biologic compatibility, because they remain in close contact with living periapical tissues over a long period of time. The aim of this study was the evaluation of cytotoxicity and genotoxicity of resin-based root canal sealers, AH 26 and ADSEAL. II. Material & Methods In this study, human periodontal ligament cells, human oral cancer cells (KB) and mouse osteoblasts (MC-3T3-E1) were used. Specimens of AH26, ADSEAL were eluted with culture medium for 1, 3, 5 and 7 days. Cytotoxicity was evaluated by using tetrazolium bromide reduction assay (MTT assay) for mitochondrial enzyme activity and cell viability. Genotoxicity was evaluated by using alkaline single cell gel electrophoresis assay (Comet assay). Also cell apoptosis induced by AH 26 was detected by Hoechst33258 staining. III. Results AH 26 and ADSEAL exhibited cytotoxic effects in all investigated cell groups. Genotoxicity was also noted for both sealers in mouse osteoblasts (MC-3T3-E1). But, ADSEAL presented significantly low cytotoxicity and genotoxicity compared with AH 26. Cytotoxicity and genotoxicity induced by AH 26 resulted in apopotosis. IV. Conclusion Our results clearly indicate that the recently invented ADSEAL has better biocompatibility than another resin based root canal sealer, AH 26. However ideal root canal sealer should have not only biocompatibility but also satisfactory physico-chemical properties such as sealing ability and stability. Thus continuous studies and developments should follow.

정상사람림프구와 HL-60 cell에서 목향의 세포독성과 백혈병세포 분화효과에 관한 연구 (Cytotoxicity in HL-60 cells and human lymphocytes and effect of leukemia cell differentiation induced by Saussureae Radix extract)

  • 이영준;강수진;구세광
    • 대한본초학회지
    • /
    • 제26권2호
    • /
    • pp.31-37
    • /
    • 2011
  • Objectives : This study was focused to investigate the toxicity of Saussurea lappa (SL) extracts in HL-60 cells and human lymphocytes. We also examined the differentiation effect of SL against leukemia cells. Methods : For examining the toxicity of SL, cytokinesis-block micronucleus (CBMN) assay and single cell gel eletrophoresis (SCGE) assay were used in present study. The cell differentiation effect of SL was evaluated by nitroblue tetrazolium (NBT) reduction assay. Results : The inhibition of cell growth in HL-60 cells was observed in a dose-dependant manner after SL treatment for 24 h. According to SCGE assay, HL-60 cells treated with SL increased DNA damage at $10{\mu}g/m{\ell}$, while DNA damage was induced by 0.1, 1, $10{\mu}g/m{\ell}$ concentration of SL in human lymphocytes. Our results indicated that SL have no genotoxic effect in HL-60 cells and human lymphocytes. Additionally, the differentiation effect was induced in $1{\mu}g/m{\ell}$ SL-treated HL-60 cells. Conclusions : From above results it is suggested that SL could be beneficial for the preparation of the useful agent for treating leukemia.

DNA Single Strand Breaks of Perchloroethylene and Its Bio-degradation Products by Single Cell Gel Electrophoresis Assay in Mammalian Cell System

  • Jeon, Hee-Kyoung;Kim, Young-Seok;Sarma, Sailendra Nlath;Kim, Youn-Jung;Sang, Byoung-In;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제1권2호
    • /
    • pp.99-105
    • /
    • 2005
  • Perchloroethylene (tetrachloroethylene, PCE), a dry cleaning and degreasing solvent, can enter ground-water through accidental leak or spills. PCE can be degraded to trichloroethylene (TCE), 1, 1-dichloroethylene (DCE) and vinyl chloride (VC) as potential bio-product. These compounds have been reported that they can cause clinical diseases and cytotoxicity. However, only a little genotoxic information of these compounds has been known. In this study, we investigated DNA single strand breaks of PCE, TCE, DCE and VC by single cell gel electrophoresis assay, (comet assay) which is a sensitive, reliable and rapid method for DNA single strand breaks with mouse lymphoma L5178Y cells. From these results, $37.5\;{\mu}g/ml$ of PCE, $189\;{\mu}g/ml$ of TCE and $56.4\;{\mu}g/ml$ of DCE were revealed significant DNA damages in the absence of S-9 metabolic activation system meaning direct-acting mutagen. And in the presence of S-9 metabolic activation system, $41.5\;{\mu}g/ml$ of PCE, $328.7\;{\mu}g/ml$ of TCE and $949\;{\mu}g/ml$ of DCE were induced significant DNA damage. In the case of VC, it was revealed a significant DNA damage in the presence of S-9 metabolic activation system. Therefore, we suggest that chloroethylene compounds (PCE, TCE, DCE and VC) may be induced the DNA damage in a mammalian cell.

Evaluation of Oxidative DNA Damage Using an Alkaline Single Cell Gel Electrophoresis (SCGE) Comet Assay, and the Protective Effects of N-Acetylcysteine Amide on Zearalenone-induced Cytotoxicity in Chang Liver Cells

  • Kang, Changgeun;Lee, Hyungkyoung;Yoo, Yong-San;Hah, Do-Yun;Kim, Chung Hui;Kim, Euikyung;Kim, Jong Shu
    • Toxicological Research
    • /
    • 제29권1호
    • /
    • pp.43-52
    • /
    • 2013
  • Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin produced by several species of Fusarium that are found in cereals and agricultural products. ZEN has been implicated in mycotoxicosis in farm animals and in humans. The toxic effects of ZEN are well known, but the ability of an alkaline Comet assay to assess ZEN-induced oxidative DNA damage in Chang liver cells has not been established. The first aim of this study was to evaluate the Comet assay for the determination of cytotoxicity and extent of DNA damage induced by ZEN toxin, and the second aim was to investigate the ability of N-acetylcysteine amide (NACA) to protect cells from ZEN-induced toxicity. In the Comet assay, DNA damage was assessed by quantifying the tail extent moment (TEM; arbitrary unit) and tail length (TL; arbitrary unit), which are used as indicators of DNA strand breaks in SCGE. The cytotoxic effects of ZEN in Chang liver cells were mediated by inhibition of cell proliferation and induction of oxidative DNA damage. Increasing the concentration of ZEN increased the extent of DNA damage. The extent of DNA migration, and percentage of cells with tails were significantly increased in a concentration-dependent manner following treatment with ZEN toxin (p < 0.05). Treatment with a low concentration of ZEN toxin (25 ${\mu}M$) induced a relatively low level of DNA damage, compared to treatment of cells with a high concentration of ZEN toxin (250 ${\mu}M$). Oxidative DNA damage appeared to be a key determinant of ZEN-induced toxicity in Chang liver cells. Significant reductions in cytolethality and oxidative DNA damage were observed when cells were pretreated with NACA prior to exposure to any concentration of ZEN. Our data suggest that ZEN induces DNA damage in Chang liver cells, and that the antioxidant activity of NACA may contribute to the reduction of ZEN-induced DNA damage and cytotoxicity via elimination of oxidative stress.

Characterization of the Immunologically Active Components of Glycyrrhiza uralensis Prepared as Herbal Kimchi

  • Hwang, Jong-Hyun;Lee, Kyong-Haeng;Yu, Kwang-Won
    • Preventive Nutrition and Food Science
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 2003
  • A crude polysaccharide fraction (GU-3) from the roots of Glycyrrhiza uralensis (licorice root), a screened herbal plant used in the preparation of herbal kimchi, enhanced Peyer's patch mediated bone marrow cell proliferation and NK cell-mediated tumor cytotoxicity against Yac-1 cells. GU-3 was further purified by DEAE-Sepharose CL-6B yielding fractions designated as GU-3I, and 3IIa∼3IIe. GU-3IIa is mainly composed of arabinose, galactose and galacturonic acid, and showed the highest bone marrow cell proliferation activity. In addition, GU-3IIb had arabinose, galactose, rhamnose and galacturonic acid as the component sugars with a small quantity of protein; GU-3IIb also enhanced activity of NK cell-mediated tumor cytotoxicity. After these fractions were further fractionated via gel filtration on Sepharose CL-6B or Sephacryl S-300, two immunological active polysaccharides, GU-3IIa-2 and 3IIb-1 were purified from the respective fractions. GU-3IIa-2 mostly contained neutral sugars (75%) such as arabinose and galactose (molar ratio; 1.0 : 0.7) in addition to a considerable amount of galacturonic acid (20%), whereas GU-3IIb-1 was composed of arabinose, galactose, rhamnose and galacturonic acid (molar ratio; 0.3 : 0.5 : 0.1 : 1.0). Methylation analysis indicated that GU-3IIa-2 was composed mainly of terminal, 4- or 5-linked and 3,4- or 3,5-branched arabinose, 3-linked, 4-linked and 3,6-branched galactose, and terminal and 4-linked galacturonic acid whereas GU-3IIb-1 contained various glycosidic linkages such as terminal and 4- or 5-linked arabinose, 2,4-branched rhamnose, terminal and 4-linked galactose, and terminal and 4-galacturonic arid. Single radial gel diffusion indicated that only GU-3IIa-2 strongly reacted with β-D-glucosyl-Yariv antigen. These results suggest that bone marrow cell proliferating activity and enhancement of NK cell-mediated tumor cytotoxicity of GU-3 are caused by polysaccharides containing a pectic arabinogalactan (GU-3IIa-2) and pectic polysaccharide (GU-3IIb-1).

Medicinal aspects of Murraya koenigii mediated silver nanoparticles

  • Mumtaz, Sumaira;Nadeem, Raziya;Sarfraz, Raja A.;Shahid, Muhammad
    • Advances in nano research
    • /
    • 제11권6호
    • /
    • pp.657-665
    • /
    • 2021
  • The present work aimed to explore green approach via aqueous leaves extract of Murraya koenigii (ALEMk) for the synthesis of silver nanoparticles (AgNPsMk) in single step. The synthesis process was visualized with a color change and monitored by employing UV/Visible spectroscopy and a clear peak attained at 420 nm confirming the synthesis of AgNPsMk. The possible functional groups present in the extract which participated in the synthesis of AgNPsMk were identified with the help of FTIR spectroscopy. Further characterization using TEM images revealed the spherical shape of AgNPsMk with average particle size of 20 nm displaying well dispersion throughout the solution. Pronounced antioxidant activities of AgNPsMk at increased concentrations observed which evidencing strong radical scavenging ability. Moreover, AgNPsMk exhibited strong antibacterial behavior when tested against bacterial strains of Escherichia coli and Bacillus subtilis. Moving ahead, in vitro cytotoxicity work revealed potent cell viability loss appearing in AU565 and HeLa cancer cell lines on exposure to AgNPsMk at increased concentration. Finally, in vivo assessment carried out inside male Wistar rats indicated non toxic effect on examined liver tissues besides biochemical analysis including bilirubin, alkaline phosphtase (ALP) and serum glutamate pyruvate transaminase (SGPT) which found within the normal range when compared with control. The prior research work profoundly apprises the potential of green synthesized AgNPsMk to play a significant role in biomedical applications and formulations.