• Title/Summary/Keyword: single camera

Search Result 776, Processing Time 0.024 seconds

Light Field Angular Super-Resolution Algorithm Using Dilated Convolutional Neural Network with Residual Network (잔차 신경망과 팽창 합성곱 신경망을 이용한 라이트 필드 각 초해상도 기법)

  • Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1604-1611
    • /
    • 2020
  • Light field image captured by a microlens array-based camera has many limitations in practical use due to its low spatial resolution and angular resolution. High spatial resolution images can be easily acquired with a single image super-resolution technique that has been studied a lot recently. But there is a problem in that high angular resolution images are distorted in the process of using disparity information inherent among images, and thus it is difficult to obtain a high-quality angular resolution image. In this paper, we propose light field angular super-resolution that extracts an initial feature map using an dilated convolutional neural network in order to effectively extract the view difference information inherent among images and generates target image using a residual neural network. The proposed network showed superior performance in PSNR and subjective image quality compared to existing angular super-resolution networks.

B-COV:Bio-inspired Virtual Interaction for 3D Articulated Robotic Arm for Post-stroke Rehabilitation during Pandemic of COVID-19

  • Allehaibi, Khalid Hamid Salman;Basori, Ahmad Hoirul;Albaqami, Nasser Nammas
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.2
    • /
    • pp.110-119
    • /
    • 2021
  • The Coronavirus or COVID-19 is contagiousness virus that infected almost every single part of the world. This pandemic forced a major country did lockdown and stay at a home policy to reduce virus spread and the number of victims. Interactions between humans and robots form a popular subject of research worldwide. In medical robotics, the primary challenge is to implement natural interactions between robots and human users. Human communication consists of dynamic processes that involve joint attention and attracting each other. Coordinated care involves sharing among agents of behaviours, events, interests, and contexts in the world from time to time. The robotics arm is an expensive and complicated system because robot simulators are widely used instead of for rehabilitation purposes in medicine. Interaction in natural ways is necessary for disabled persons to work with the robot simulator. This article proposes a low-cost rehabilitation system by building an arm gesture tracking system based on a depth camera that can capture and interpret human gestures and use them as interactive commands for a robot simulator to perform specific tasks on the 3D block. The results show that the proposed system can help patients control the rotation and movement of the 3D arm using their hands. The pilot testing with healthy subjects yielded encouraging results. They could synchronize their actions with a 3D robotic arm to perform several repetitive tasks and exerting 19920 J of energy (kg.m2.S-2). The average of consumed energy mentioned before is in medium scale. Therefore, we relate this energy with rehabilitation performance as an initial stage and can be improved further with extra repetitive exercise to speed up the recovery process.

Comparison of Clinical Characteristics of Fluorescence in Quantitative Light-Induced Fluorescence Images according to the Maturation Level of Dental Plaque

  • Jung, Eun-Ha;Oh, Hye-Young
    • Journal of dental hygiene science
    • /
    • v.21 no.4
    • /
    • pp.219-226
    • /
    • 2021
  • Background: Proper detection and management of dental plaque are essential for individual oral health. We aimed to evaluate the maturation level of dental plaque using a two-tone disclosing agent and to compare it with the fluorescence of dental plaque on the quantitative light-induced fluorescence (QLF) image to obtain primary data for the development of a new dental plaque scoring system. Methods: Twenty-eight subjects who consented to participate after understanding the purpose of the study were screened. The images of the anterior teeth were obtained using the QLF device. Subsequently, dental plaque was stained with a two-tone disclosing solution and a photograph was obtained with a digital single-lens reflex (DSLR) camera. The staining scores were assigned as follows: 0 for no staining, 1 for pink staining, and 2 for blue staining. The marked points on the DSLR images were selected for RGB color analysis. The relationship between dental plaque maturation and the red/green (R/G) ratio was evaluated using Spearman's rank correlation. Additionally, different red fluorescence values according to dental plaque accumulation were assessed using one-way analysis of variance followed by Scheffe's post-hoc test to identify statistically significant differences between the groups. Results: A comparison of the intensity of red fluorescence according to the maturation of the two-tone stained dental plaque confirmed that R/G ratio was higher in the QLF images with dental plaque maturation (p<0.001). Correlation analysis between the stained dental plaque and the red fluorescence intensity in the QLF image confirmed an excellent positive correlation (p<0.001). Conclusion: A new plaque scoring system can be developed based on the results of the present study. In addition, these study results may also help in dental plaque management in the clinical setting.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

A Study of Tram-Pedestrian Collision Prediction Method Using YOLOv5 and Motion Vector (YOLOv5와 모션벡터를 활용한 트램-보행자 충돌 예측 방법 연구)

  • Kim, Young-Min;An, Hyeon-Uk;Jeon, Hee-gyun;Kim, Jin-Pyeong;Jang, Gyu-Jin;Hwang, Hyeon-Chyeol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.561-568
    • /
    • 2021
  • In recent years, autonomous driving technologies have become a high-value-added technology that attracts attention in the fields of science and industry. For smooth Self-driving, it is necessary to accurately detect an object and estimate its movement speed in real time. CNN-based deep learning algorithms and conventional dense optical flows have a large consumption time, making it difficult to detect objects and estimate its movement speed in real time. In this paper, using a single camera image, fast object detection was performed using the YOLOv5 algorithm, a deep learning algorithm, and fast estimation of the speed of the object was performed by using a local dense optical flow modified from the existing dense optical flow based on the detected object. Based on this algorithm, we present a system that can predict the collision time and probability, and through this system, we intend to contribute to prevent tram accidents.

Hair Classification and Region Segmentation by Location Distribution and Graph Cutting (위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, Google MedeiaPipe presents a novel approach for neural network-based hair segmentation from a single camera input specifically designed for real-time, mobile application. Though neural network related to hair segmentation is relatively small size, it produces a high-quality hair segmentation mask that is well suited for AR effects such as a realistic hair recoloring. However, it has undesirable segmentation effects according to hair styles or in case of containing noises and holes. In this study, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood function. It is further optimized according to graph cuts algorithm and initial hair region is obtained. Finally, clustering algorithm and image post-processing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. The proposed method is applied to MediaPipe hair segmentation pipeline.

Raw Sensor Single Image Super Resolution Using Color Corrector-Attention Network (코렉터 어텐션 네트워크을 이용한 로우 센서 영상 초해상화 기법)

  • Paul Shin;Teaha Kim;Yeejin Lee
    • Journal of Broadcast Engineering
    • /
    • v.28 no.1
    • /
    • pp.90-99
    • /
    • 2023
  • In this paper, we propose a super resolution network for raw sensor image which data size is lower comparatively to RGB image. But the actual capabilities of raw image super resolution depends on color correction because its absent of camera post processing that leads to unintended result having different white balance, saturation, etc. Thus, we introduce novel color corrector attention network by adopting the idea of precedent raw super resolution research, and tune to the our faced problem from data specification. The result is not superior to former researches but shows decent output on certain performance matrix. In the same time, we encounter new challenging problem of unexpected shadowing artifact around image objects that cause performance declination despite its good result overall. This problem remains a task to be solved in the future research.

Estimation of two-dimensional position of soybean crop for developing weeding robot (제초로봇 개발을 위한 2차원 콩 작물 위치 자동검출)

  • SooHyun Cho;ChungYeol Lee;HeeJong Jeong;SeungWoo Kang;DaeHyun Lee
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.15-23
    • /
    • 2023
  • In this study, two-dimensional location of crops for auto weeding was detected using deep learning. To construct a dataset for soybean detection, an image-capturing system was developed using a mono camera and single-board computer and the system was mounted on a weeding robot to collect soybean images. A dataset was constructed by extracting RoI (region of interest) from the raw image and each sample was labeled with soybean and the background for classification learning. The deep learning model consisted of four convolutional layers and was trained with a weakly supervised learning method that can provide object localization only using image-level labeling. Localization of the soybean area can be visualized via CAM and the two-dimensional position of the soybean was estimated by clustering the pixels associated with the soybean area and transforming the pixel coordinates to world coordinates. The actual position, which is determined manually as pixel coordinates in the image was evaluated and performances were 6.6(X-axis), 5.1(Y-axis) and 1.2(X-axis), 2.2(Y-axis) for MSE and RMSE about world coordinates, respectively. From the results, we confirmed that the center position of the soybean area derived through deep learning was sufficient for use in automatic weeding systems.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

Accident Detection System for Construction Sites Using Multiple Cameras and Object Detection (다중 카메라와 객체 탐지를 활용한 건설 현장 사고 감지 시스템)

  • Min hyung Kim;Min sung Kam;Ho sung Ryu;Jun hyeok Park;Min soo Jeon;Hyeong woo Choi;Jun-Ki Min
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.605-611
    • /
    • 2023
  • Accidents at construction sites have a very high rate of fatalities due to the nature of being prone to severe injury patients. In order to reduce the mortality rate of severely injury patients, quick response is required, and some systems that detect accidents using AI technology and cameras have been devised to respond quickly to accidents. However, since existing accident detection systems use only a single camera, there are blind spots, Thus, they cannot detect all accidents at a construction site. Therefore, in this paper, we present the system that minimizes the detection blind spot by using multiple cameras. Our implemented system extracts feature points from the images of multiple cameras with the YOLO-pose library, and inputs the extracted feature points to a Long Short Term Memory-based recurrent neural network in order to detect accidents. In our experimental result, we confirme that the proposed system shows high accuracy while minimizing detection blind spots by using multiple cameras.