Acknowledgement
이 논문은 2023년도 한국기술교육대학교 교수 교육연구진흥과제 지원에 의하여 연구되었음.
References
- Ministry of Employment and Labor "Additional Statistics on Industrial Accidents in 2022" 2022. https://www.moel.go.kr/policy/policydata/view.do?bbs_seq=20230100992
- J.C. Yang and J.D. Moon, "The effects of prehospital care on on-scene time in patients with major trauma" The Korean Journal of Emergency Medical Services, Vol. 24, No. 1, pp. 67-76, 2020. doi: 10.14408/KJEMS.2020.24.1.067n
- S. Jeong, S. Kang, and I. Chun, "Human-skeleton based fall-detection method using LSTM for manufacturing industries" 2019 34th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), pp. 1-4, 2019 doi: 10.1109/ITC-CSCC.2019.8793342
- J. Redmon, S. Divvala, R. Grishick and A. Farhadi, "You only look once: Unified, real-time object detection" Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016. doi: 10.1109/CVPR.2016.91
- A. K. Jain, J. Mao and K. M. Mohiuddin,"Artificial neural networks: A tutorial" Computer, Vol. 29, No. 3, pp. 31-44, 1996. doi: 10.1109/2.485891
- B.S. Hwang, J.H. Kim, Y.R. Lee, C.U. Kyeong, J.H. Seon, Y.G. Sun, J.Y. Kim. "Performance of Exercise Posture Correction System Based on Deep Learning" The Journal of The Institute of Internet, Broadcasting and Communication, Vol. 22, No. 5, pp. 177-183, 2022 doi: doi.org/10.7236/JIIBC.2022.22.5.177
- I.S. Oh, "Machine Learning" Hanbit Academy, 2017.
- S. Alex, "Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network" Physica D: Nonlinear Phenomena, Vol. 404, pp. 132306, 2020. doi: 10.1016/j.physd.2019.132306
- S. Hochreiter, "The vanishing gradient problem during learning recurrent neural nets and problem solutions" International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 6, No. 3, pp. 107-116, 1998. doi: 10.1142/S0218488598000094
- J. Lu, M. Nguyen and W.Q. Yan, "Deep learning methods for human behavior recognition" 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ). IEEE, pp 1-6, 2020. doi: 10.1109/IVCNZ51579.2020.9290640
- Y. Yoon and T. Oh, "A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and Open-Pose" The journal of the convergence on culture technology, Vol. 8, No. 5, pp. 735-740, 2022. doi: 10.17703/JCCT.2022.8.5.735.
- Y.W. Lee, J.H. Park, S.Y. Sin, "Implementation of Fall Detection Based on CNN-LSTM" Vol. 4 7, No. 2, pp. 340-347, 2022. doi:10.7840/kics.2022.47.2.340
- W.H. Choi, C.D. Kwon, B.S. Yoo, M.H. Kim and J.K. Min. "Accident Detection System Based on RNN Exploiting Keypoints and LSTM" KIISE Transactions on Computing Practices, Vol. 29, No. 7, pp. 309-315, 2023. doi: 10.5626/KTCP.2023.29.7.309
- R. Girshick, J. Donahue, T. Darre and J. Malik. "Rich feature hierarchies for accurate object detection and semantic segmentation" Proceedings of the IEEE conference on computer vision and pat tern recognition, pp. 580-587, 2014. doi: 10.1109/CVPR.2014.81
- N.J. Kwak, D.J. Kim. "A study on Detecting the Safety helmet wearing using YOLOv5-S model and transfer learning" International Journal of Advanced Culture Technology, Vol.10, No.1, pp. 30 2-309, 2022 doi: 10.17703/IJACT.2022.10.1.302
- D. Maji, S. Nagori, M. Mathew and D. Poddar. "Yolo-pose: Enhancing yolo for multi person pose estimation using object keypoint similarity loss" Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2637-2646, 2022. doi: 10.1109/CVPRW56347.2022.00297
- N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov. "Dropout: a simple way to prevent neural networks from overfitting" The journal of machine learning research, Vol. 15, No. 1, pp. 1929-1958, 2014.
- AIHub, "Senior Abnormal Behavior Video" 2022. https://aihub.or.kr/
- N.V. Chawla, K.W. Bowyer, L.O. Hall and W.P. Kegelmeyer. "SMOTE: synthetic minority over-sampling technique" Journal of artificial intelligence research, Vol. 16, pp. 321-357, 2002. doi: 10.48550/arXiv.1106.1813