• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.023 seconds

Ultrasonic flushing 기법에 의한 유류오염토양의 복원에 관한 실험연구

  • Jeong, Ha-Ik;Oh, In-Gyu;Kim, Sang-Geun;Lee, Yong-Su;Yoo, Jun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.13-17
    • /
    • 2002
  • Ultrasonic waves have several mechanical, chemical, and biological effects on a saturated soil medium. Their mechanical effects, popularly known as cavitation. Cavitation is the rapid and repeated formation, and resulting implosion, of imcrobubbles in a liquid, resulting in the propagation of microscopic shock waves. In a soil-liquid system, their mechanical effects generate high differntial fluid-particle velocities and microscopic shock waves. The velocity perturbations are capable of dislodging oil in the system by overcoming the forces binding oil to sand particles. In this study, a series of laboratory experiments involving the simple flushing and ultrasonic flushing were carried out. An increase in permeability and oil removal rate were observed in ultrasonic flushing tests. Some practical implications of these results are discussed in terms of technical feasibility of in situ implementation of ultrasonics.

  • PDF

Performance analysis of a 3 bladed & 5 bladed savonius rotor for wave energy conversion by CFD

  • Zullah, Mohammed Aisd;Prasad, Deepak;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.628-629
    • /
    • 2009
  • A variety of technologies have already been developed to capture energy from the ocean waves, this one is simple to construct. Rather then looking at the surface waves, the technique used lets the waters current beneath the waves directly drive the rotors. The novel ocean wave energy convertor consists of savonius rotor which is mounted in the ocillating water column (OWC) chamber. This study investigates the performance of a 3 blade and 5 bladed savonius rotor under same wave condition using commercial CFD code. Initially the performance analysis of savonius type turbine have been carried out with conventional three bladed curved rotors. From the experieneces of the simulations, 5 bladed savonius rotor have been developed and studied. Performace caracteristics of the 5 bladed savonius rotor has been evaluated and the results obgtained are comopared with the conventional three bladed curved rotors.

  • PDF

Time Domain Analysis of Circular Patch Antennas (원형 패치 안테나의 시간영역 해석)

  • Lee, Jick-Yeul
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.10
    • /
    • pp.19-24
    • /
    • 1995
  • The majority of problems to which FDTD is being applied involve open structure which require the appropriate scheme to terminate the computational domain. In particular, for the propagation problem of the outgoing waves, a certain type of boundary condition needs to be applied on outer boundaries of the computational domain to generate no reflected waves. In this paper, a new simple technique is presented, which allows the reduced computation time and excellent absorbing characteristics for normal and oblique incident waves on outer boundaries. To illustrate the validity of this method, a numerical calculation for monopole antenna is carried out and the results are compared to measured data. The time-domain properties for circular patch antennas are investicated.

  • PDF

Real-time Visualization of Ship and Buoy Motions Coupled with Ocean Waves in a Ship Handling Simulator (선박 운항 시뮬레이터에서 해양파와 연동된 선박 및 부표 운동의 실시간 가시화)

  • Yeo, Dong-Jin;Cha, Moo-Hyun;Mun, Du-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.3
    • /
    • pp.227-235
    • /
    • 2011
  • Ship handling simulator should have capabilities of calculating ship motions (heave, pitch, and roll) at given sea state and displaying the calculated motions through a real-time 3D visualization system. Motion solver of a ship handling simulator generally calculates those motions in addition to position for an own ship, a main simulation target, but provides only position information for traffic ships. Therefore, it is required to simulate real-time traffic ship and buoy motions coupled with ocean waves in a ship handling simulator for the realistic visualization. In the paper, the authors propose a simple dynamics model by which ship and buoy motions are calculated with the input data of wave height and discuss a method for the implementation of a ship and buoy motions calculation module.

Relativistic View in Hydrodynamic Waves (유체파동에의 상대성이논 적용)

  • Kim Hun Chol
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.193-196
    • /
    • 2002
  • The relativistic theory has not been properly taken up by the marine hydrodynamicists. To take on a relativistic view, we confine ourselves to a simple vector case of a wave train in spacetime, to be shown to represent a sound wave or a surface wave, and bring in an observer who is travelling on another platform. We are interested in relative position of each event on these two worldlines. It, then, will be shown that the velocity, the acceleration, the encounter frequency, the group velocity, and the time and the space distance between the wave and the observer on the worldlines should all be derivable in principle. This is interpreted to mean that we really have the relativistic events taking place with different values of time dilation in the sense of 'spacetime', and that the well-known ${\lceil}special Theory of Relativity{\rfloor}$ applies just as well in hydrodynamic waves.

  • PDF

Frequency Characteristics of a Membrane Duct (박막형 소음기의 주파수 특성)

  • 최성훈;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.420-425
    • /
    • 2001
  • Theoretical analysis of noise reduction by a membrane-duct system is presented. When acorn waves propagate in the membrane-duct, the membrane is also excited and its motion is coup with interior medium. It has been shown that propagating waves with supersonic wave speed exist beyond a certain critical frequency that is determined from the mass ratio of the me and the fluid. Also found are subsonic waves which couple strongly wi th the membrane a provide a powerful mechanism of energy dissipation. Existence of an exterior medium alter dispersion characteristics. It provides additional mass loading and reduces the subsort speed further. The effect of mean flow speed on dispersion characteristics is also consider results show that the membrane-duct system can be applied to diminish and absorb 1 frequency noise in duct instead of passive muffler, such as a simple expansion chamber absorption material.

  • PDF

Metamaterial Perfect Absorber Technology for Leading the Fourth Industrial Revolution (4차 산업혁명을 선도할 메타물질 완전흡수체 기술 동향)

  • Hong, S.H.;Kim, M.H.;Yun, H.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.1-7
    • /
    • 2017
  • A metamaterial is a material engineered to have a property that does not exist in nature. A designable material property can be achieved by tailoring its structure, and thus a metamaterial is a novel ICT material and component technology that can break through the limitations of conventional technologies. Among the metamaterials available, a perfect metamaterial absorber is a technology that can nearly absorb light, sound waves, thermal waves, and electromagnetic waves with a simple structure, and has been of significant interest in energy, display, sensor, stealth, and military applications, with wavelengths from visible light to microwaves. In this article, we introduce a brief description of metamaterial absorber technology, the critical issues for its application, as well as ETRI's developed metamaterial absorber technology and its prospects for future use.

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

Wave-structure interaction of coastal reinforced concrete piles with bracing and different arrangements

  • Ghorbanipour, Mohammad Rezazadeh;Sarkardeh, Hamed
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.171-178
    • /
    • 2021
  • Wave interaction in marine structures is an important issue where requires to be considered in view of number of bases, piles and arrangement method. In this research, effect of waves and their forces on piles with different arrangements was investigated using numerical modeling. Simulations were performed in presence of bracing elements between piles against the force of waves and also were compared with simple arrangement without bracing elements in different arrangements. Results showed that in models that were fitted with bracing elements, the displacement rate reduced about 96%, and tension tolerances increased more than 53% and abutment responses also decreased about 70%.

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF