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Relativistic View in Hydrodynamic Waves
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Abstract

The relativistic theory has not been properly taken up by the marine hydrodynamicists. To take on a relativistic
view, we confine ourselves to a simple vector case of a wave train in spacetime, to be shown to represent a
sound wave or a surface wave, and bring in an observer who is travelling on another platform. We are interested
in relative position of each event on these two worldlines. It, then, will be shown that the velocity, the
acceleration, the encounter frequency, the group velocity, and the time and the space distance between the wave and
the observer on the worldlines should all be derivable in principle. This is interpreted to mean that we really have
the relativistic events taking place with different values of time dilation in the sense of 'spacetime’, and that the
well-known " Special Theory of Relativity ; applies just as well in hydrodynamic waves.

1. Introductory Remarks

The relativistic theory, in particular the special theory of
relativity as originally thought of by Albert Einstein and very
much home to physicists, has not been properly taken up by
us, the hydrodynamicists. To think of it, the relativistic velocity
and positioning of events in fluids whether be it acoustic
pressure propagation or gravitational surface wave, being within
our biological realm, are much more easily observable and
would give us some practical results if developed further.
This short note is to suggest for younger students if they
might delve into this. Much of this note is referred from
Ref. 1.

2, Hydrodynamic Waves

2-1. Sound Waves

Sound waves, although originating from a point and thus
a spherical wave originally, may for a simplicity be
considered to be a plane wave at a far distance. The
pressure fluctuation function p, definable as the difference
between the pressure P and the mean pressure P', has a
form in Newtonian space:
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p = P-P' = A sin(-0t + k - r + const) (1

where A
t : time, k

amplitude/constant, ® : angular frequency/constant,
: wave vector(note: the bold letters indicating
vectors), r : position vector.

Following this, we define a function in spacetime
(Eq.(1) is a simpler case of Eq.(2)]:

P = Af ij)r;}(K-R+F) @)

where A: amplitude, K: the wave four-vector, F: constant,

R the position vector in spacetime as in Eq.(8).

2-2. Surface Waves with a Body

Presence of a body may be represented by a collection
of singularities, which in turn presents an agitation or an
observation platform. For surface waves with an agitation
near the surface (source location f—0 on z-axis ), far from
the point of excitation (x—o0), the wave elevation function
Z(x,z,t) in ordinary Cartesian coordinates with z pointing
downward may take a form:

Z = Ulga®iax) - o®at atz —0 (3)
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where U is the forward speed and g the gravitational
constant, and where ® is the solution of the differential
equation V2 = 0, to be satisfied at the boundaries.
The solutions take the following forms respectively:

For the boundary condition on the surface for escillating
sources (or multipoles):

Ko+9d/ 9z =0 at z =0 with K= 0¥g 4)

For 2-dimensions (cylindrical coordinates x=rcos8, z=rsinf):

z= A S jay Ulsyg sin gy )

' n
v K (—1) @, COS @5

where A = 2
;1 (n— D! b ,sin a ,

For the boundary condition on the surface for steady
case with a forward speed of U:

0% odx + K(0¥dz) = 0 at z=0 with K" =g/U (6)
For 2-dimensions:

Z=AL 25 KX (7

where

n—1
A O o , . (51 @ ,cos a,
(n—D! KT (- "b,sin a, ]

n=1

From the above equations, ie. Egs. (5), and (7),
confined approximately to the free surface (z—0), for

2-dimensions, and if A, R and K are allowed to have
much broader meaning in spacetime, it is seen that the
equations of surface waves may be classed into Eq.(2),
albeit with some manipulations. Egs. (5), and (7) are
respectively from Eqs. 207 on p.132, and derived from 222
on p.140 from Ref. 2. Waves in 3-dimensional case should
be looked into, but not expected to be any different in
principle.

3. Relativistic View

Let us now confine ourselves to a simple case in
vector, spacetime vector, and consider a wave train. Let its
worldline normal to the crest with respect to a fixed

system be represented by a spacetime position vector R,
definable by the proper time parameter T, which in turn
may be given in ten (10) coordinates in Cartesian.l) Let us
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bring in an observer who is travelling in another worldline
given by t [J, where {J is a time like unit vector. The

worldline t {J in the direction of [J is observer dependent.
We are interested in relative position of each events in this
unique space constructed by the observer.

Then, by splitting R with respect to t {J (one parallel
to t {J and the other orthogonal to, ie. see Fig. 1),

R=tU+y with U+ »=0 (8)

Since [J is timelike, U2=-1, and 4 is orthogonal
to {J and is spacelike, ie. ri> 0.

The length of 4 or the space distance gto the events R

. 2
iss ¢2= p° = t2_2_2

[Fig. 1]
origin

Eq. (8) may be uniquely solved for t and
t=-U+ R by multiplying Eq. (8) by [J and
y= R+ (U+ R U Dby inserting the above into
Eq. (8). Since the worldline R R(T) and T is the

proper time along R,

dr = -(d Ry

From Eq. (8) differentiating, d R =dt J+ d »
with d »+ [J= 0, and by squaring,

-(dT)*= -(dt*+ (d #?

or dt=dtV]— p? with g =dyp/dt (9

This is the famous equation for time dilation. However,
it is to be noted that there is no universal time valid for
this expression. This is observer dependent and is uniquely
specific to our case, i.e. no relation to the constant speed
of light, but related to all the different speed components of
waves, etc., and therefore the time dilation takes different

1) Galileo group with three Euler angles for x-vectors, three
components each for velocity v and the displacement of origin
d plus time t.



values for R, # ({J ctc. The comcept of Minkowsky

v?i=1,
however, a proper interpretation has never been made.
Four velocity of R is defined: V = d Rdt

space should be applicable. For the cases of

_ _ 1 _ 1
V=d Rdi= d Ridt = (UF v
Vi- v? Vi— ot v

=V( U+ v) (10)

withy = %, and [J- p=0.
2
1—w»

Four acceleration is defined:
A = dvidt = d&* RAdT? (1)

Since the observer has the four-velocity [J, split K:

K-0U+k withk- =0 (12)

where k: wave vector, 0: angular frequency.

By multiplying {J to (12), we obtain an observer
dependent angular frequency ©°,

w=- K- [J (13)

This expression yielding encounter angular frequency for
a wave may be resolved for K and k by measuring various

@° from the observation platform {J , which is certainly
within our means at hand.

We may also take a superposition case where many
multidirectional waves of the type given by Eq. (2) co-exist,
ie. with different A, K, and F in different terms, and an

observer on [J does in general measure different angular
frequencies as in Eq. (13), and from this we may resolve
for the directional wave-spectrum,

If an observer is made to follow the wave train such
that the observer sees no difference in angular frequency,
the four-velocity V satisfying the condition:

d(V - K)= V - dK=0 (14)

This is the condition giving the group velocity of the
wave. V[dK—0] is called group four-velocity. From Eq. (12),

K = do U+ dk  with dk - {7 = 0. (15)

Also using Egs. (10) and (15), Eq. (14) becomes:

V- dK =v(-do+ - dk) = 0, or do= p- dk

This is an equation in a Euclidian space from which an
ordinary form of group velocity may be derived, ie., by
letting k =kk, where ¥ being unit vector:

v = (dw/dk)k? (16)

It should then follow that from these expressions the
velocity, the acceleration, the encounter frequency, the group
velocity, and the time and the space distance between the
wave and the observer on the worldlines should all be
derivable, i.e. the relative position of events on two
worldlines.

4. Concluding Remarks

Physicists in the theory of relativity (the special theory
of relativity here) deal with much faster events like light
and subparticles, not directly visible. Ours is very much
slower. The reference speed of signal is not the speed of
light but the pressure propagation for the acoustic waves,
and for the surface waves the group velocity of the wave
train, or the observer's speed, which may be greater than
the group velocity, not at all considered possible in the case
of light.3) This is interpreted to mean that during the advent
of the wave train, we also may have shifted our
observation platform, and we really have the relativistic
event taking place with different values of time dilation in
the sense of 'spacetime’.

It should, then, be obvious that the well-known

"Special Theory of Relativity, applies in hydrodynamic
waves just as well.

2) k = kx, then K>= 1 by definition, and k - dx = 0,
ie. K and dk are orthogonal to each other,
Then, dk = dkk + k dx
do = p-xdk +k ¢ dx
If no dispersion is assumed, i.c. ¢ is function of k, but not
of K.
Choosing dk=0, dw = 0 = ¢+ dk , then ¢ is parallel to
k and do/dk = ¢ - K, or by multiplying by K,
v = (dw/dk)x

3) It is certainly possible to outrun the events in hydrodynamics
as we have faster means of signaling, say visual or other
electronic means, but let us assume for the time being we are
deprived of these means, as actually is true in the case of a
submerged situation in water.
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