• Title/Summary/Keyword: simple waves

Search Result 278, Processing Time 0.026 seconds

Torsional surface waves in a non-homogeneous isotropic layer over viscoelastic half-space

  • Kakar, Rajneesh;Gupta, Kishan Chand
    • Interaction and multiscale mechanics
    • /
    • v.6 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • The aim of this paper is to study the propagation of torsional surface waves in non-homogeneous isotropic layer of finite thickness placed over a homogeneous viscoelastic half-space, when both density and rigidity of the non-homogeneous medium are assumed to vary exponentially with depth. The frequency equations are obtained by using simple method of separation of variables. Further, it is seen that when viscoelastic parameter and non-homogeneity parameter is neglected, the dispersion equation gives the dispersion equations of Love waves in homogeneous, elastic and isotropic layer placed over homogeneous viscoelastic medium. The problem has been solved numerically and the effects of various inhomogeneities of the medium on torsional waves have been illustrated graphically.

Comparison of Parabolic Mild-Slope Equations in View of Wave Diffraction (회절현상의 관점에서 본 포물선형 완경사방정식의 비교)

  • 이해균;이길성;이창훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • Among the phenomena of water-wave transformation, the wave diffraction is prominent for waves insidc the harbor. It is important to study how accurately the diffraction can be resolved by the numerical model. Three parabolic mild-slope equations, i.e., simple, wide-ang1e, three-parameter parabolic equations, are compared in view of the diffraction of water-waves around a semi-infinite breakwater. To avoid reflections at lateral boundaries, we apply the perfect boundary condition of Dalrymple and Martin (1992) in case of simple parabolic equation. The numerical results for the case of a semi-infinite breakwater are compared with the analytical solution of Penney and Price (1952). All the results are very accurate when waves attack the breakwater normally. When waves attack the breakwater obliquely, however, the simple parabolic equation yields the worst solution and the three-parameter parabolic equation yields the most accurate solution.

  • PDF

The characteristics of Lamb waves in a composite plate with thickness variation (두께변화가 있는 복합재 평판의 램파 전파특성)

  • Han Jeongho;Kim Chun-Gon
    • Composites Research
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2005
  • An active inspection system using Lamb waves for structural health monitoring was considered in this paper. In order to understand the characteristics of the Lamb waves propagating in a composite plate, the experiment was performed for a quasi-isotropic composite plate with thickness variation. Lamb waves were generated and received by the thin PZT transducers bonded on the surface. In this test, a simple new technique was tried for characterizing the Lamb waves propagating across the discontinuity due to the thickness variation. The results showed that Lamb waves were more sensitive to the thinner plate with faster group velocity and that the thickness change in composite plate was detectable. Consequently, the potential of applying this technique to structural health monitoring was verified.

Simple analytical method for predicting the sloshing motion in a rectangular pool

  • Park, Won Man;Choi, Dae Kyung;Kim, Kyungsoo;Son, Sung Man;Oh, Se Hong;Lee, Kang Hee;Kang, Heung Seok;Choi, Choengryul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.947-955
    • /
    • 2020
  • Predicting the sloshing motion of a coolant during a seismic assessment of a rectangular spent fuel pool is of critical concern. Linear theory, which provides a simple analytical method, has been used to predict the sloshing motion in rectangular pools and tanks. However, this theory is not suitable for the high-frequency excitation problem. In this study, the authors developed a simple analytical method for predicting the sloshing motion in a rectangular pool for a wide range of excitation frequencies. The correlation among the linear theory parameters, influencing on excitation and convective waves, and the excitation frequency is investigated. Sloshing waves in a rectangular pool with several liquid heights are predicted using the original linear theory, a modified linear theory and computational fluid dynamics analysis. The results demonstrate that the developed method can predict sloshing motion over a wide range of excitation frequencies. However, the developed method has the limitations of linear solutions since it neglects the nonlinear features of sloshing motion. Despite these limitations, the authors believe that the developed method can be useful as a simple analytical method for predicting the sloshing motion in a rectangular pool under various external excitations.

Diagnosis and Non-contact Measurement of Bending Waves by Magnetosrictive Sensors (마그네토스트릭션 센서를 이용한 굽힘파의 비접촉 측정 및 이상 진단)

  • Kim, Ik-Kyu;Kim, Yoon-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.630-635
    • /
    • 2002
  • This work is concerned with the damage size estimation by using propagating bending wave signals in a beam. For the accurate estimation, we apply the continuous wavelet transforms to the incident waves and the reflected waves from a small damage in a long cylindrical beam. In particular, we propose to use the ratio of the magnitude of the incident and reflected waves along the ridges in the wavelet-transformed time-frequency plane. This technique is applied to the signals measured by non-contact magnetostrictive sensors. Experimental results indicate that the present method using the magnetostrictive sensor can be quite effective for accurate damage size estimation with simple measurements.

  • PDF

Concrete strength monitoring based on the variation of ultrasonic waveform acquired by piezoelectric aggregates

  • Wei, Li;Wang, Zijian;Cao, Maosen;Fu, Ronghua
    • Structural Engineering and Mechanics
    • /
    • v.76 no.5
    • /
    • pp.591-598
    • /
    • 2020
  • Ultrasonic waves provide a non-destructive and sensitive way to monitor the concrete hydration. However, limited works are reported to monitor the evolution of the mechanical parameter at early ages. In this study, modified piezoelectric aggregates are embedded inside a concrete beam to excite and receive primary waves. A hydration index, namely, the variation of ultrasonic waveform (VUW) is developed to characterize the variation of the transmitted waves during the hydration process. The recorded hydration indices are compared with the compressive strength measured by destructive test at different ages. The results show that the VUW is closer to the compressive strength than the other two traditional hydration indices, ultrasonic velocity and wave packet energy. The proposed VUW provides a simple and accurate way to monitor the concrete hydration at early ages.

Analytical Approximation in Deep Water Waves

  • Shin, JangRyong
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • The objective of this paper is to present an analytical solution in deep water waves and verify the validity of the theory (Shin, 2015). Hence this is a follow-up to Shin (2015). Instead of a variational approach, another approach was considered for a more accurate assessment in this study. The products of two coefficients were not neglected in this study. The two wave profiles from the KFSBC and DFSBC were evaluated at N discrete points on the free-surface, and the combination coefficients were determined for when the two curves pass the discrete points. Thus, the solution satisfies the differential equation (DE), bottom boundary condition (BBC), and the kinematic free surface boundary condition (KFSBC) exactly. The error in the dynamic free surface boundary condition (DFSBC) is less than 0.003%. The wave theory was simplified based on the assumption tanh $D{\approx}1$ in this paper. Unlike the perturbation method, the results are possible for steep waves and can be calculated without iteration. The result is very simple compared to the 5th Stokes' theory. Stokes' breaking-wave criterion has been checked in this study.

Dependence of the time resolved anti-Stokes Raman signal on the correlation between pump and Stokes waves (시분해 반스톡스 라만 분광 신호의 스톡스광과 펌프광의 상관관계에 대한 의존성 계산)

  • 고춘수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.5
    • /
    • pp.372-376
    • /
    • 1997
  • We study the time resolved anti-Stokes Raman spectroscopy with correlated pump and Stokes waves. When only two pump waves with relative delay are incident into a Raman medium, the Stokes waves generated by stimulated Raman scattering couple with the pump waves to generate anti-Stokes signal. Since the correlation between Stokes and the pump waves are not perfect and not quantified yet, we make a simple model fot it and calculate the normalized anti-Stokes signal intensities as a function of time delay. The broadband light regarded as chaotic field.

  • PDF

Performance of the Submerged Dual Buoy/Membrane Breakwaters in Oblique Seas

  • Kee, S.T.
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.11-21
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wav interactions with a system composed of fully submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing between two systems. The fully submerged two systems allow surface and bottom gaps to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of the second kind) that satisfy the Helmholz governing equation in fluid domains. A boundary element program for three fluid domains based on a discrete membrane dynamic model and simple source distribution method is developed. Using this developed computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, gaps, spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters can, if it is properly tuned to the coming waves, have good performances in reflecting the obliquely incident waves over a wide range of wave frequency and headings.

  • PDF

Membrane-duct: its theory and feasibility (박막형 소음기: 이론과 적용 가능성)

  • Kim, Yang-Hann;Chun, Young-Doo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1648-1653
    • /
    • 2000
  • Theoretical analysis of noise reduction by a membrane-duct system is presented. When acoustic waves propagate in the membrane-duct, the part of membrane is also excited and its motion is coupled with interior medium. For an infinite plane membrane-duct system, a simple coupled governing equation is derived and solved. One of the characteristics of dispersion relation is that evanescent waves occur below critical frequency. Attaching damping materials to the membrane may improve the absorption efficiency of acoustic energy. The results show that the membrane-duct system can be applied to diminish and absorb low frequency noise in duct instead of passive muffler, such as simple expansion chamber or absorption material.

  • PDF