• Title/Summary/Keyword: similarity.

Search Result 8,191, Processing Time 0.038 seconds

A Sampling-based Algorithm for Top-${\kappa}$ Similarity Joins (Top-${\kappa}$ 유사도 조인을 위한 샘플링 기반 알고리즘)

  • Park, Jong Soo
    • Journal of KIISE:Databases
    • /
    • v.41 no.4
    • /
    • pp.256-261
    • /
    • 2014
  • The problem of top-${\kappa}$ set similarity joins finds the top-${\kappa}$ pairs of records ranked by their similarities between two sets of input records. We propose an efficient algorithm to return top-${\kappa}$ similarity join pairs using a sampling technique. From a sample of the input records, we construct a histogram of set similarity joins, and then compute an estimated similarity threshold in the histogram for top-${\kappa}$ join pairs within the error bound of 95% confidence level based on statistical inference. Finally, the estimated threshold is applied to the traditional similarity join algorithm which uses the min-heap structure to get top-${\kappa}$ similarity joins. The experimental results show the good performance of the proposed algorithm on large real datasets.

Influence of Product Similarity between Parent Brand and Extended Brand on Extended Product Evaluation - Focus on Franchise Brand - (모브랜드 제품-확장브랜드 제품간 유사성이 확장제품평가에 미치는 영향 - 프랜차이즈 브랜드를 중심으로 -)

  • Kim, Ki-Suk;Shin, Bong-Sup
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.378-389
    • /
    • 2011
  • This study scrutinizes the similarity difference between parent brand product and extended brand product of franchise business and its effect on the attitude toward extended brand product. Results showed that the similarity difference is appeared according to product extended. The cognitive attitude and the behavioral attitude toward similarity difference are also appeared to be different as high in product similarity leads to high in both cognitive and behavioral attitude. The result also showed that the food similarity compare to the technological similarity has higher impact on attitude. These study results provided a significant insights in brand extension strategy of franchise business.

Learning Discriminative Fisher Kernel for Image Retrieval

  • Wang, Bin;Li, Xiong;Liu, Yuncai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.3
    • /
    • pp.522-538
    • /
    • 2013
  • Content based image retrieval has become an increasingly important research topic for its wide application. It is highly challenging when facing to large-scale database with large variance. The retrieval systems rely on a key component, the predefined or learned similarity measures over images. We note that, the similarity measures can be potential improved if the data distribution information is exploited using a more sophisticated way. In this paper, we propose a similarity measure learning approach for image retrieval. The similarity measure, so called Fisher kernel, is derived from the probabilistic distribution of images and is the function over observed data, hidden variable and model parameters, where the hidden variables encode high level information which are powerful in discrimination and are failed to be exploited in previous methods. We further propose a discriminative learning method for the similarity measure, i.e., encouraging the learned similarity to take a large value for a pair of images with the same label and to take a small value for a pair of images with distinct labels. The learned similarity measure, fully exploiting the data distribution, is well adapted to dataset and would improve the retrieval system. We evaluate the proposed method on Corel-1000, Corel5k, Caltech101 and MIRFlickr 25,000 databases. The results show the competitive performance of the proposed method.

Retrieval of Scholarly Articles with Similar Core Contents

  • Liu, Rey-Long
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.7 no.3
    • /
    • pp.5-27
    • /
    • 2017
  • Retrieval of scholarly articles about a specific research issue is a routine job of researchers to cross-validate the evidence about the issue. Two articles that focus on a research issue should share similar terms in their core contents, including their goals, backgrounds, and conclusions. In this paper, we present a technique CCSE ($\underline{C}ore$ $\underline{C}ontent$ $\underline{S}imilarity$ $\underline{E}stimation$) that, given an article a, recommends those articles that share similar core content terms with a. CCSE works on titles and abstracts of articles, which are publicly available. It estimates and integrates three kinds of similarity: goal similarity, background similarity, and conclusion similarity. Empirical evaluation shows that CCSE performs significantly better than several state-of-the-art techniques in recommending those biomedical articles that are judged (by domain experts) to be the ones whose core contents focus on the same research issues. CCSE works for those articles that present research background followed by main results and discussion, and hence it may be used to support the identification of the closely related evidence already published in these articles, even when only titles and abstracts of the articles are available.

Comparison of Code Similarity Analysis Performance of funcGNN and Siamese Network (funcGNN과 Siamese Network의 코드 유사성 분석 성능비교)

  • Choi, Dong-Bin;Jo, In-su;Park, Young B.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.113-116
    • /
    • 2021
  • As artificial intelligence technologies, including deep learning, develop, these technologies are being introduced to code similarity analysis. In the traditional analysis method of calculating the graph edit distance (GED) after converting the source code into a control flow graph (CFG), there are studies that calculate the GED through a trained graph neural network (GNN) with the converted CFG, Methods for analyzing code similarity through CNN by imaging CFG are also being studied. In this paper, to determine which approach will be effective and efficient in researching code similarity analysis methods using artificial intelligence in the future, code similarity is measured through funcGNN, which measures code similarity using GNN, and Siamese Network, which is an image similarity analysis model. The accuracy was compared and analyzed. As a result of the analysis, the error rate (0.0458) of the Siamese network was bigger than that of the funcGNN (0.0362).

Similarity measurement based on Min-Hash for Preserving Privacy

  • Cha, Hyun-Jong;Yang, Ho-Kyung;Song, You-Jin
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.240-245
    • /
    • 2022
  • Because of the importance of the information, encryption algorithms are heavily used. Raw data is encrypted and secure, but problems arise when the key for decryption is exposed. In particular, large-scale Internet sites such as Facebook and Amazon suffer serious damage when user data is exposed. Recently, research into a new fourth-generation encryption technology that can protect user-related data without the use of a key required for encryption is attracting attention. Also, data clustering technology using encryption is attracting attention. In this paper, we try to reduce key exposure by using homomorphic encryption. In addition, we want to maintain privacy through similarity measurement. Additionally, holistic similarity measurements are time-consuming and expensive as the data size and scope increases. Therefore, Min-Hash has been studied to efficiently estimate the similarity between two signatures Methods of measuring similarity that have been studied in the past are time-consuming and expensive as the size and area of data increases. However, Min-Hash allowed us to efficiently infer the similarity between the two sets. Min-Hash is widely used for anti-plagiarism, graph and image analysis, and genetic analysis. Therefore, this paper reports privacy using homomorphic encryption and presents a model for efficient similarity measurement using Min-Hash.

A Study on Detecting Changes in Injection Molding Process through Similarity Analysis of Mold Vibration Signal Patterns (금형 기반 진동 신호 패턴의 유사도 분석을 통한 사출성형공정 변화 감지에 대한 연구)

  • Jong-Sun Kim
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.34-40
    • /
    • 2023
  • In this study, real-time collection of mold vibration signals during injection molding processes was achieved through IoT devices installed on the mold surface. To analyze changes in the collected vibration signals, injection molding was performed under six different process conditions. Analysis of the mold vibration signals according to process conditions revealed distinct trends and patterns. Based on this result, cosine similarity was applied to compare pattern changes in the mold vibration signals. The similarity in time and acceleration vector space between the collected data was analyzed. The results showed that under identical conditions for all six process settings, the cosine similarity remained around 0.92±0.07. However, when different process conditions were applied, the cosine similarity decreased to the range of 0.47±0.07. Based on these results, a cosine similarity threshold of 0.60~0.70 was established. When applied to the analysis of mold vibration signals, it was possible to determine whether the molding process was stable or whether variations had occurred due to changes in process conditions. This establishes the potential use of cosine similarity based on mold vibration signals in future applications for real-time monitoring of molding process changes and anomaly detection.

A study on Similarity analysis of National R&D Programs using R&D Project's technical classification (R&D과제의 기술분류를 이용한 사업간 유사도 분석 기법에 관한 연구)

  • Kim, Ju-Ho;Kim, Young-Ja;Kim, Jong-Bae
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.317-324
    • /
    • 2012
  • Recently, coordination task of similarity between national R&D programs is emphasized on view from the R&D investment efficiency. But the previous similarity search method like text-based similarity search which using keyword of R&D projects has reached the limit due to deviation of document's quality. For the solve the limitations of text-based similarity search using the keyword extraction, in this study, utilization of R&D project's technical classification will be discussed as a new similarity search method when analyzed of similarity between national R&D programs. To this end, extracts the Science and Technology Standard Classification of R & D projects which are collected when national R&D Survey & analysis, and creates peculiar vector model of each R&D programs. Verify a reliability of this study by calculate the cosine-based and Euclidean distance-based similarity and compare with calculated the text-based similarity.

Performance Analysis of Similarity Reflecting Jaccard Index for Solving Data Sparsity in Collaborative Filtering (협력필터링의 데이터 희소성 해결을 위한 자카드 지수 반영의 유사도 성능 분석)

  • Lee, Soojung
    • The Journal of Korean Association of Computer Education
    • /
    • v.19 no.4
    • /
    • pp.59-66
    • /
    • 2016
  • It has been studied to reflect the number of co-rated items for solving data sparsity problem in collaborative filtering systems. A well-known method of Jaccard index allowed performance improvement, when combined with previous similarity measures. However, the degree of performance improvement when combined with existing similarity measures in various data environments are seldom analyzed, which is the objective of this study. Jaccard index as a sole similarity measure yielded much higher prediction quality than traditional measures and very high recommendation quality in a sparse dataset. In general, previous similarity measures combined with Jaccard index improved performance regardless of dataset characteristics. Especially, cosine similarity achieved the highest improvement in sparse datasets, while similarity of Mean Squared Difference degraded prediction quality in denser sets. Therefore, one needs to consider characteristics of data environment and similarity measures before combining Jaccard index for similarity use.

The Cultural Similarity Effects on the Industry of Medical Tourism (문화적 유사성이 의료관광산업에 미치는 영향에 관한 연구)

  • Zhang, Jun;Lee, Hoon-Young
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.1
    • /
    • pp.67-76
    • /
    • 2018
  • Purpose - With the worldwide aging problem and the development of globalization, customers prefer to seek affordable medical services with the higher quality overseas. This new trend has urged some destination countries to improve their services for the more competitive advantages over other countries. Literature research indicate that medical quality and cost may be the key factors influencing global patients' decisions. In the international environment, however, medical tourism destinations are selected due to cultural similarity between the hosting country and the customers' own country. The more similarity perceived between the two countries leads foreign patients to choose the considering country as the destination for medical tourism. However, little research has been conducted on this topic. Thus, we empirically investigate how cultural similarity influences Chinese medical customers' choice of the destinations. We also consider the factors related to medical competency and travel attribute which might affect customers' decisions along with some moderating roles of disease types. Research design, data, and methodology - We proposed a research model in order to confirm the relations among different variables of cultural similarity, medical competency, travel attractiveness, disease types, and destination choice. The questionnaire survey is processed in the more economically developed regions of China such as Beijing, Shanghai, and Jiangsu. Conditional logit regression is applied to analyze the data of 881. Results - Results indicate that cultural similarity is the important predictor of Chinese customers' decision to select a medical country. However, the effects of cultural similarity vary according to the disease types. We also find that medical competency and travel attractiveness influence their decisions with the moderating role of disease types. Conclusions - Cultural similarity is the important factor that influences Chinese potential medical tourists' decisions to select a destination. Marketing managers should consider the effects of cultural similarity when developing strategies for attracting Chinese medical tourists. Since medical competency and travel attractiveness are still the critical key elements for them to evaluate the destination countries, it is necessary to continuously improve medical service quality and facilities. The results also recommend that medical managers should sharpen their marketing strategies by segmenting Chinese potential customers in terms of disease types.