• Title/Summary/Keyword: similar materials

Search Result 4,776, Processing Time 0.081 seconds

The Effect of Heat Treatment on the Microstructures and Mechanical Properties of Inconel 713C Alloy Vacuum Investment Castings (진공 정밀주조한 Inconel 713C 합금의 조직과 기계적 성질에 미치는 열처리의 영향)

  • Yoo, Byung-Ki;Choi, Hak-Kyu;Park, Heung-Il;Jeong, Hae-Yong
    • Journal of Korea Foundry Society
    • /
    • v.40 no.2
    • /
    • pp.16-24
    • /
    • 2020
  • The effect of a heat treatment on the microstructure and mechanical properties of Inconel 713C alloy vacuum investment castings were investigated. The microstructure of the as-cast state was observed, showing well-developed dendrite structures and distributed carbide particles and solidified massive precipitates in the grain or grain boundary during solidification, in this case the γ′ phase and MC particles. During a heat treatment, the γ phase matrix was reinforced by solid solution elements, carbide particles from the film morphology precipitated along the grain boundary, and many micro-precipitates of second γ′ phases 0.2 ㎛~2 ㎛ in size were newly formed in the γ phase matrix according to SEM-EDS analysis results. The tensile strength at a high temperature (850℃) decreased slightly becoming comparable with the room-temperature result, while the hardness value of the specimen after the vacuum heat treatment increased by approximately 19%, becoming similar to that of the as-cast condition. However, the impact values at room temperature and low temperature (-196℃) were approximated; this alloy was mostly not affected by an impact at a low temperature. In the observations of the fracture surface morphologies of the specimens after the tensile tests, the fractures at room temperature were a mix of brittle and ductile fractures, and an intergranular fracture in the inter-dendrite structure and some dimples in the matrix were observed, whereas the fractures at high temperatures were ductile fractures, with many dimples arising due to precipitation. It was found that a reinforced matrix and precipitates of carbide and the γ′ phase due to the heat treatment had significant effects, contributing greatly to the excellent mechanical properties.

The Study on Eddy Current Characteristic for Surface Defect of Gas Turbine Rotor Material (가스터빈 로터 재질에 따른 표면결함 와전류 특성연구)

  • Ahn, Y.S.;Gil, D.S.;Park, S.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.63-67
    • /
    • 2010
  • This paper introduces the eddy current signal characteristic of magnetic and non-magnetic gas turbine rotor. In the past, Magnetic particle inspection method was used in magnetic material for qualitative defect evaluation and the ultrasonic test method was used for quantitative evaluation. Nowadays, eddy current method is used in magnetic gas turbine rotor inspection due to advanced sensor design technology. We are studying on the magnetic gas turbine rotor by using eddy current method. We prepared diverse depth specimens made by magnetic and non-magnetic materials. We select optimum frequency according to material standard penetration data and experiment results. We got the signal on magnetic and non-magnetic material about 0.2 mm, 05 mm, 1.0 mm, 1.5 mm 2.0 mm and 2.5 mm depth defects and compare the signal amplitude and signal trend according to defect depth and frequency. The results show that signal amplitudes of magnetic are bigger than non-magnetic material and the trends are similar on every defect depth and frequency. The detection and resolution capabilities of eddy current are more effective in magnetic material than in non-magnetic materials. So, the eddy current method is effective inspection method on magnetic gas turbine rotor. And it has the merits of time saving and simple procedure by elimination of the ultrasonic inspection in traditional inspection method.

A Study on Evaluation Methods for the Fire-retardant Performance of Hanok Components (건축 마감재의 화재안전기준 비교분석을 통한 한옥 부재의 난연성능 평가기준 연구)

  • Kwark, Ji-Hyun;Choi, Jung-Min;Ku, Jae-Hyun
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.1-7
    • /
    • 2011
  • In this study, standards and test methods for building materials of domestic and foreign countries were compared and analyzed to propose evaluation methods for the fire-retardant performance of HANOK components (Traditional house). IBC and NFPA codes recently have been adopted in the US, and the properties such as critical heat flux, fire spread index and smoke density are being used as an evaluation reference. In Europe, the unified Euroclass has been adopted and the surface flammability, prototype fire test or cone calorimeter test are conducted for the performance test. Japan has the similar system as Korea where the class is classified into 3 grades. We tried to study a quantitative evaluation method of fire retardant performance for the HANOK components based on the analysis results of the several countries' standards and test methods for building materials.

A Study on the Corrosion of Al-Alloy Propeller Used for a Coasting Vessel (연안 선박용 Al합금 프로펠러의 부식에 관한 연구)

  • LIM, Uh-Joh;PARK, Hee-Ok;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Recently, with the tendency of lightening, high-strength and high-speed in the marine industries such as marine structures, ships and propellers, it is rapidly enlarged the use of the aluminium alloy. Therefore, there occurs much interest in the study on corrosion characteristics of aluminium alloy. This paper was studied on the corrosion characteristics of Al-Mg alloy propeller used for a coasting vessel. Under the various pH of marine environment, the corrosion test of Al-Mg alloy was carried out. And thus polarization resistance, corrosion potential, and current density behavior of Al-Mg alloy and galvanic corrosion behavior of Al-brass and Al-Mg alloy coupled Al 5086 and SS 400 for hull were investigated. The main results are as following: 1. The corrosion potential of Al-brass propeller is more nobel than materials for hull, but that of Al-Mg alloy propeller is low or similar to materials for hull. Therefore, the galvanic corrosion of hull due to Al-Mg propeller don't occur. 2. The polarization resistance of Al-Mg alloy in sea water of pH 4 is highest, and corrosion current density of Al-Mg propeller is the most controlled. 3. As pH value decreases, potential showed Evans polarization diagram approaches cathodic potential. The corrosion current density of Al-Mg alloy is controlled to anodic reaction rate, therefore, the corrosion reaction of Al-Mg alloy is anodic control.

Microstructures and Mechanical Properties of Extruded Al 7050 Billet and Ring Forged One with Large Scale

  • Bae, Dong-Su;Joo, Kyung-Hwan;Lee, Jin-Kyung;Lee, Sang-Pill;Chang, Chang-Beom;Hong, Sung-Seop;Park, Tae-Won
    • Journal of Power System Engineering
    • /
    • v.20 no.6
    • /
    • pp.40-45
    • /
    • 2016
  • The manufacturing process of large scaled Al 7050 alloy is difficult for the occurrence of solidification crack during casting. The aims of this study are the evaluations of microstructure and mechanical properties of extruded Al 7050 billet and ring forged one with large scale. Large scaled Al 7050 billet was casted by direct-chill casting process. The extruded and ring forged specimens were prepared from the casted ingot after residual stress relief and homogenization heat treatment, respectively. Microstructures, hardness and tensile test of the surface, middle and center part of each specimen were performed at room temperature. Sheared and elongated type grains were observed at the edge parts of surface and center area and its aspect ratios of grains were low and similar as 0.21 while that of middle area was closed to 0.92 value in ring forged Al 7050 alloy. The mechanical properties of extruded Al 7050 alloy were superior than those of ring forged one. The hardness values of surface and center part were slightly higher than that of middle part in ring forged Al 7050 alloy.

Tribological Behavior of Fe-based Bulk Amorphous Alloy in a Distilled Water Environment (수중환경에서 Fe계 벌크 비정질 합금의 트라이볼로지적 거동)

  • Jang, Beomtaek;Yi, Seonghoon
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.295-302
    • /
    • 2014
  • The tribological behavior of an Fe-based bulk amorphous alloy while sliding against a AISI 304 disc is investigated using a unidirectional pin-on-disc type tribometer in dry and distilled water environments. The rod-shaped bulk pins are fabricated by suction casting. The crystallinities of the bulk amorphous alloys before and after the friction tests are determined by X-ray diffraction. The friction coefficient and specific wear rate of the amorphous pin in the water environment are found to be twice and thrice as much as in the dry environment at a low applied pressure, respectively. However, at a higher pressure, the friction coefficient and specific wear rate are 0.4 and 1.02 mg/(Nm/s), respectively, in the water environment. A microstructure analysis shows that the worn surface of the alloy is characterized by delamination from the smooth friction surface, and thus delamination is the main wear mechanism during the friction test in dry sliding environment. In contrast, brittle fracture morphologies are apparent on the friction surface formed in distilled water environment. For the sample tested at a lower sliding speed, the XPS data from the oxide layer are similar to those of the pure element with weak suboxide peaks. For higher sliding speeds, all the main sharp peaks representing the core level binding energies are shifted to the oxide region.

Comparison of Venting Modes for Bench Scale Treatment of Diesel Contaminated Soil (디젤오염토양의 Bench Scale 처리에 있어서 벤팅모드 비교)

  • Kim, Young-Am;Lee, Yong-Hee;Lee, Dong-Sun;Suh, Myung-Gyo
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.499-505
    • /
    • 2006
  • Bioventing efficiency was compared in a continuous and an intermittent(6hr injection and 6hr rest) air injection mode. Two lab-scale columns which packed with 5 kg of soil artificially contaminated by diesel oil were operated. The columns were maintained at the $25^{\circ}C{\pm}2.5$ in order to minimize the effect of exterior temperature variation. The flow rate of air injection mode were maintained constantly at the flow rate of 10 ml/min. The moisture of the columns was stably maintained at $60{\sim}80%$ of field capacity. The nutrient compounds were added to make C:N:P ratio as 100:10:l. The continuous and intermittent injection modes showed 67.56% and 69.63% reduction of initial TPH concentration during 90 days, respectively. Two venting modes showed similar results in the analysis of the trends of the hydrocarbon utilizing bacterial counts for operating periods. The carbon dioxide production rate of the continuous injection mode was higher than that of intermittent injection mode. The loss of diesel oil by volatilization in the continuous and intermittent injection modes were about 5% and 1%, respectively. The lower volatilization loss in the intermittent injection mode suggested that the biodegradation of TPH in the intermittent injection mode was greater than that of the continuous mode. These results suggested that the intermittent injection mode is more efficient than the continuous venting mode.

A Study on the Repair Time of the Construction Type in the Apartment Housings (공동주택 공종별 수선시기 설정 연구)

  • Lee, Kang-Hee;Park, Geun-Soo;Chae, Chang-U
    • Journal of the Korean housing association
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2011
  • Apartment is settled down as a main housing type and massive supply has been conducted since 1990's. The government has focused on the housing supply to improve the housing number and cut its price. On the contrary, the management of the housing has been neglected to get an early deterioration. Since 1995's, various ways have been made to improve and maintain the building function and performance. Among these, the long-term repair plan has played a main role to manage the housing condition and plan the repair schedule for preparing the massive cost of repair such as a roof proof, elevator change. The long-tern repair plan provides the repair time and repair rate according to various construction types. Most of the management agent apply the repair standard into the field area. But the repair time could not reflect the present condition and bring into the wrong maintenance. Therefore, the repair time for the long-term maintenance plan would be revised and reflected from the material and technology development. |n this study, it aimed at improvement for the repair time in various construction types which are provided in the long-term repair plan. For this, the 22 management agents are surveyed directly. This study shows that the repair time of the painting are correspondent to the repair time of the long-term plan irregardless of the painting materials. Most of other areas would correspondently similar to the long-term plan. This study could not include the building location, material and other haracteristics. Therefore, the further study would be needed to reflect the building and materials attributes to get the detailed repair time.

THE EFFECTS OF POROUS HYDROXYAPATITE AND NATURAL CORAL ON HUMAN PERIODONTAL DEFECTS (인체 치간부위 치조골 결손에 사용된 합성골의 효과에 관한 연구)

  • Shim, Jeong-Min;Choi, Kwang-Choon;Son, Seong-Heul
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.2
    • /
    • pp.345-351
    • /
    • 1993
  • Various alloplastic materials have been used on the periodontally diseased ossous defects. Hydroxyapatite, which is used the most common alloplastic material is a non-resorbable form of calcium phosphate and natural coral which is a biodegradable by carbonic anhydrase in osteoclast was introduced recently. The purpose of the present study was to evaluate the clinical effects of porous hydoxyapatite and natural coral on the human periodontal defects. Four males and three females who had adult periodontitis were selected for this study. The teeth that had similar bone loss radiographically and periodontal pocket deeper than 5mm were selected. Gingival recession, pocket depth, plaque index(Silness & Loe), sulcus bleeding index and tooth mobility (measured by Periotest$^{(r)}$) were examined before graft. Before insertion of alloplastic materials, the depth from CEJ to bone crest and from CEJ to base of the osseous defect was recorded. Porous particulate hydroxyapatite(Interpore 200$^{(r)}$, A group) was place on the defect and natural coral(Biocoral$^{(r)}$, B group) was placed on the defect of the opposing tooth. Six months post-surgically the same parameters were recorded by reentry procedures. A and B group showed 0.6mm of mean recession. Mean reduction of pocket depth were 5mm for A group and 4.9mm of B group. Reduced SBI and tooth mobility were recorded. Osseous defect fills of the original defects were 2.9mm for A and 3mm for B group. Percentage defect fills were 71% for A and 59% for B group. The difference of defect fill between pre- and post-insertion was statstically significant(p<0.05). But the difference between the two groups was not significant statistically(p<0.05). The clinical impression at 6 month re-entry and the numerical date indicate that natural coral as well as porous particulate hydoxyapatite has a definite potential as an alloplastic implant in the treatment of periodontal osseous defects.

  • PDF

Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

  • Jang, Dae-Eun;Lee, Ji-Young;Jang, Hyun-Seon;Lee, Jang-Jae;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • PURPOSE. The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS. Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS. All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION. Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed.