• Title/Summary/Keyword: similar material

Search Result 3,185, Processing Time 0.028 seconds

Effect of Corynebacterium glutamicum on Livestock Material Burial Treatment

  • Kim, Bit-Na;Cho, Ho-Seong;Cha, Yougin;Park, Joon-Kyu;Kim, Geonha;Kim, Yang-Hoon;Min, Jiho
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1404-1408
    • /
    • 2016
  • In recent years, foot-and-mouth disease has occurred in all parts of the world. The animals with the disease are buried in the ground; therefore, their concentration could affect ground or groundwater. Moreover, the complete degradation of carcasses is not a certainty, and their disposal is important to prevent humans, livestock, and the environment from being affected with the disease. The treatment of Corynebacterium glutamicum is a feasible method to reduce the risk of carcass decomposition affecting humans or the environment. Therefore, this study aimed to investigate the effect of C. glutamicum on the soil environment with a carcass. The composition of amino acids in the soil treated with C. glutamicum was generally higher than those in the untreated soil. Moreover, the plant root in the soil samples treated with C. glutamicum had 84.0% amino acids relative to the standard value and was similar to that of the control. The results of this study suggest the possibility to reduce the toxicity of a grave land containing animals with this disease.

Cytotoxicity of Listeriolysin O Produced by Membrane-Encapsulated Bacillus subtilis on Leukemia Cells

  • Stachowiak, R.;Granicka, L.H.;Wisniewski, J.;Lyzniak, M.;Kawiak, J.;Bielecki, J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.11
    • /
    • pp.1193-1198
    • /
    • 2011
  • Encapsulation of biological material in the permiselective membrane allows to construct a system separating cells from their products, which may find biotechnological as well as biomedical applications in biological processes regulation. Application of a permiselective membrane allows avoiding an attack of the implanted microorganisms on the host. Our aim was to evaluate the performance of Bacillus subtilis encapsulated in an elaborate membrane system producing listeriolysin O, a cytolysin from Listeria monocytogenes, with chosen eukaryotic cells for future application in anticancer treatment. The system of encapsulating in membrane live Bacillus subtilis BR1-S secreting listeriolysin O was proven to exert the effective cytotoxic activity on eukaryotic cells. Interestingly, listeriolysin O showed selective cytotoxic activity on eukaryotic cells: more human leukemia Jurkat T cells were killed than human chronic lymphocytic B cells leukemia at similar conditions in vitro. This system of encapsulated B. subtilis, continuously releasing bacterial products, may affect selectively different types of cells and may have future application in local anticancer treatment.

Characterization of Ceramic Oxide Layer Produced on Commercial Al Alloy by Plasma Electrolytic Oxidation in Various KOH Concentrations

  • Lee, Jung-Hyung;Kim, Seong-Jong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.2
    • /
    • pp.119-124
    • /
    • 2016
  • Plasma electrolytic oxidation (PEO) is a promising coating process to produce ceramic oxide on valve metals such as Al, Mg and Ti. The PEO coating is carried out with a dilute alkaline electrolyte solution using a similar technique to conventional anodizing. The coating process involves multiple process parameters which can influence the surface properties of the resultant coating, including power mode, electrolyte solution, substrate, and process time. In this study, ceramic oxide coatings were prepared on commercial Al alloy in electrolytes with different KOH concentrations (0.5 ~ 4 g/L) by plasma electrolytic oxidation. Microstructural and electrochemical characterization were conducted to investigate the effects of electrolyte concentration on the microstructure and electrochemical characteristics of PEO coating. It was revealed that KOH concentration exert a great influence not only on voltage-time responses during PEO process but also on surface morphology of the coating. In the voltage-time response, the dielectric breakdown voltage tended to decrease with increasing KOH concentration, possibly due to difference in solution conductivity. The surface morphology was pancake-like with lower KOH concentration, while a mixed form of reticulate and pancake structures was observed for higher KOH concentration. The KOH concentration was found to have little effect on the electrochemical characteristics of coating, although PEO treatment improved the corrosion resistance of the substrate material significantly.

A Study of Guest Room's furniture Design Character in Local Business Hotel - Intensive examination on special grade hotel which have executive only floor in Seoul area - (국내 비즈니스호텔 객실 가구의 디자인 특성에 관한 연구 - 서울지역 특1급 Executive 전용층 객실을 보유한 호텔 사례를 중심으로 -)

  • 신석호
    • Korean Institute of Interior Design Journal
    • /
    • no.37
    • /
    • pp.95-102
    • /
    • 2003
  • It has been true that major investment among local business hotels were placed in furniture design character as there are increasing number of international events hosted by Korea. The study, under these circumstances, as a study In advance to see the design feature and trend of local business hotel's guest room furniture, has done interview with guest room manager, photographing of rooms, actual survey for analysing guest room plane surface, etc., researcher directly visiting 15 hotels that have special first grade businessmen only floor in Seoul. In addition, a survey has been done to know if each hotel room and furniture has particular image, from this survey the design feature of local business hotel's guest room has been analysed, and the result is as following. The result shows that similar pattern is applied in furniture placement of each guest room but for the furniture type and design concept, some try to re-design of wooden furniture available in Lee dynasty and others adopt European style like France and United Kingdom for the realization of semi-classic image. Typical material and color is red oak and maple.

Investigations on Partial Discharge, Dielectric and Thermal Characteristics of Nano SiO2 Modified Sunflower Oil for Power Transformer Applications

  • Nagendran, S.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1337-1345
    • /
    • 2018
  • The reliability of power transmission and distribution depends up on the consistency of insulation in the high voltage power transformer. In recent times, considering the drawbacks of conventional mineral oils such as poor biodegradability and poor fire safety level, several research works are being carried out on natural ester based nanofluids. Earlier research works show that sunflower oil has similar dielectric characteristics compared with mineral oil. BIOTEMP oil which is now commercially available in the market for transformers is based on sunflower oil. Addition of nanofillers in the base oil improves the dielectric characteristics of liquid insulation. Only few results are available in the literature about the insulation characteristics of nano modified natural esters. Hence understanding the influence of addition of nanofillers in the dielectric properties of sunflower oil and collecting the database is important. Considering these facts, present work contributes to investigate the important characteristics such as partial discharge, lightning impulse, breakdown strength, tandelta, volume resistivity, viscosity and thermal characteristics of $SiO_2$ nano modified sunflower oil with different wt% concentration of nano filler material varied from 0.01wt% to 0.1wt%. From the obtained results, nano modified sunflower oil shows better performance than virgin sunflower oil and hence it may be a suitable candidate for power transformer applications.

AC Electrical and Mechanical Properties of Epoxy-Nano-Microsilica Mixed Composites for Eco-Friendly GIS Spacer (친환경 GIS Spacer용, 에폭시-나노-마이크로실리카 혼합 콤포지트의 교류 전기적, 기계적 특성)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.9
    • /
    • pp.1181-1188
    • /
    • 2018
  • In order to develop new insulating materials for GIS Spacer using environmentally friendly insulating gas, three kinds of dispersed liquid nano composites of solid epoxy /nano layered silicate filled material were prepared. And the epoxy/nano/micro silica composite was prepared by mixing epoxy/nano 3 phr dispersion/4 kinds of filler contents(40,50,60, 70wt%). The electrical insulation breakdown strengths of the nano and nano/micro mixed composites were evaluated by using 8 kinds of samples including the original epoxy. The mechanical tensile strength of the epoxy / nano / micro silica composite were evaluated, also. The TEM was measured to evaluate the internal structure of nano/micro composites. As a result, it was confirmed that the layered silicate nano particles was exfoliated through the process of inserting epoxy resin between silicate layers and the layers. In addition, dispersion of nano / micro silica resulted in improvement of electrical insulation breakdown strength with increase of filling amount of dense tissue with nanoparticles inserted between microparticles. In addition, the tensile strength showed a similar tendency, and as the content of microsilica filler increased, the mechanical improvement was further increased.

Study on a compatibilization of polypropylene/thermotropic liquid crystalline polymer blends (폴리프로필렌/열방성 액정 고분자 블렌드의 상용화에 관한 연구)

  • Son, Young-Gon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1215-1219
    • /
    • 2007
  • In this paper, we present a study on the polypropylene/thermotropic liquid crystalline polymer blends. In previous researches, the blends are fabricated at very high temperatures, at least 300oC, since the TLCPs investigated in most studies have melting temperatures higher than 270oC. As a consequence, the thermal degradation of PP can not be avoidable. In order to obtain high physical properties, the excess amount of TLCP must be added. In this study, a new type of TLCP was used in the PP/TLCP blends. Since the new TLCP has a melting point of 220oC, the blending can be performed at much lower temperature than the previous studios. The new PP/TLCP shows similar or somewhat higher physical properties than those of the previous studies. It is proved that the new TLCP can be used as a reinforcement material in PP based blends.

  • PDF

CMOS Integrated Multiple-Stage Frequency Divider with Ring Oscillator for Low Power PLL

  • Ann, Sehyuk;Park, Jusang;Hwang, Inwoo;Kim, Namsoo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • This paper proposes a low power frequency divider for an integrated CMOS phase-locked loop (PLL). An injection-locked frequency divider (ILFD) was designed, along with a current-mode logic (CML) frequency divider in order to obtain a broadband and high-frequency operation. A ring oscillator was designed to operate at 1.2 GHz, and the ILFD was used to divide the frequency of its input signal by two. The structure of the ILFD is similar to that of the ring oscillator in order to ensure the frequency alignment between the oscillator and the ILFD. The CML frequency divider was used as the second stage of the divider. The proposed frequency divider was applied in a conventional PLL design, using a 0.18 ${\mu}m$ CMOS process. Simulation shows that the proposed divide-by-two ILFD and the divide-by-eight CML frequency dividers operated as expected for an input frequency of 1.2 GHz, with a power consumption of 30 mW.

Diffusion Currents in the Amorphous Structure of Zinc Tin Oxide and Crystallinity-Dependent Electrical Characteristics

  • Oh, Teresa
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.225-228
    • /
    • 2017
  • In this study, zinc tin oxide (ZTO) films were prepared on indium tin oxide (ITO) glasses and annealed at different temperatures under vacuum to investigate the correlation between the Ohmic/Schottky contacts, electrical properties, and bonding structures with respect to the annealing temperatures. The ZTO film annealed at $150^{\circ}C$ exhibited an amorphous structure because of the electron-hole recombination effect, and the current of the ZTO film annealed at $150^{\circ}C$ was less than that of the other films because of the potential barrier effect at the Schottky contact. The drift current as charge carriers was similar to the leakage current in a transparent thin-film device, but the diffusion current related to the Schottky barrier leads to the decrease in the leakage current. The direction of the diffusion current was opposite to that of the drift current resulting in a two-fold enhancement of the cut-off effect of leakage drift current due to the diffusion current, and improved performance of the device with the Schottky barrier. Hence, the thin film with an amorphous structure easily becomes a Schottky contact.

A Comparison of the Dielectric Behavior of Aromatic and Aliphatic Polyurethanes in Relation to Transitional Phenomena

  • Kim, Chy Hyung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.4
    • /
    • pp.211-216
    • /
    • 2017
  • The dielectric properties of two polyurethanes (PUs) with different hard segments, i.e., aromatic methylene di-p-phenyl diisocyanate (MDI) and aliphatic hexamethylene diisocyanate (HDI), were investigated in the temperature range of -100 to $100^{\circ}C$ and in the frequency range of 1 Hz to 3 kHz. The ${\alpha}$-relaxations induced by the glass transition of the equivalent soft segments in the two PUs occurred at relaxation times of ${\tau}=3.46{\times}10^{-3}s$ for MDI-PU and ${\tau}=3.39{\times}10^{-2}s$ for HDI-PU at $-20^{\circ}C$, in accord with the temperature-frequency superposition principle, resulting in similar shifting factors. However, different I-relaxations were observed for the two PUs. The I-relaxation of MDI-PU occurred due to the mobility of the chain extenders near $80^{\circ}C$ with a slower shifting rate than the ${\alpha}$-relaxation. On the other hand, I-relaxation arising from both the extender and the unconstrained hard segments of HDI-PU occurred at $70{\sim}100^{\circ}C$, indicating complicated dielectric behavior due to partial interaction with the ${\alpha}$-relaxation at high frequencies. Thus, the I-relaxation of HDI-PU did not follow the superposition principle. The dielectric behaviors of the PUs were mainly influenced by their phase transitions, which were affected by the structure and components of the materials.