• Title/Summary/Keyword: silicate($SiO_2$)

Search Result 431, Processing Time 0.027 seconds

Effect of Composition on Isotropic Chemical Shift of Na Silicate and Aluminosilicate Glasses Using Solid State NMR (고상 핵자기공명 분광분석을 이용한 비정질 Na 규산염 및 알루미노규산염 내 조성에 따른 등방성 화학적 차폐 변화 규명)

  • Park, Sun Young;Lee, Sung Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • Probing the Na environments in Na silicate and aluminosilicate glasses is essential to the macroscopic properties of melts in the Earth. In particular, exploring the atomic structure of Na silicate and aluminosilicate glasses reveals Na-O distance, which plays an important role in transport properties of melts. Here we report the local environment around Na using $^{23}Na$ magic angle spinning (MAS) NMR. We also obtain $^{23}Na$ isotropic chemical shift (${\delta}_{iso}$) of Na silicate and aluminosilicate glasses with varying composition using Dmfit program. The Q mas 1/2 model simulates the experimental results with three simulated peaks while the CzSimple model simulates with one peak. The ${\delta}_{iso}$ decreases with increasing $SiO_2$ content in Na silicate and aluminosilicate glasses. The ${\delta}_{iso}$ increases with increasing $Na_2O$ content in Na-Ca silicate and Na aluminosilicate glasses when the $SiO_2$ content is fixed. Considering the ${\delta}_{iso}$ of Na aluminosilicate glasses available in the previous studies, together with the current simulation results, we confirm that the ${\delta}_{iso}$ has positive correlation with Al / (Al + Si). Those experimental results were reproduced better using Q mas 1/2 model. The disorder of Na in Na silicate and aluminosilicate glasses can be revealed through the simulation of 1D $^{23}Na$ MAS NMR spectra using Dmfit program in a short time.

Purity of γ-Dicalcium Silicate with Synthetic and Raw Materials Conditions (합성 및 원료 조건에 따른 γ-C2S의 순도)

  • Lee, Seok-Hee;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • γ-dicalcium silicate(γ-C2S) is known as a polymorphism of belite. Due to its high CO2 fixing capacity and the production process with low CO2 emission, γ-C2S has attracted more attention of researchers. For the further development of γ-C2S applications in construction industry, this study aims to investigate the method for synthesizing high purity of γ-C2S. The influence of raw materials and calcination temperatures on the purity of γ-C2S was evaluated. Several Ca bearing materials were selected as the calcium source, the materials which's main component is SiO2 were used as the silicon source. Raw materials were mixed and calcined under different temperatures. The results revealed that the highest purity could be obtained using Ca(OH)2 and SiO2 powder as raw materials. In addition, a relatively economic synthesis method using natural mineral materials-limestone and silica sand as raw materials were developed for the practical application. The purity of synthetic γ-C2S was recorded up to 77.6%.

The Solubility of Calcium Silicate Hydrates (규산석탄수화물의 용해도에 관한 연구)

  • 이경희
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.16-20
    • /
    • 1978
  • The solubility of tobermorite was measured, and it was compaired with the resultswhich calculated by thermodynamic data. As the result, 1) The type of silisic acid species in liquid phase were the both type of $H_3SiO_4$-, $H_4SiO_4$. 2) The solubility product of tobermorite represented the maximum value at 18$0^{\circ}C$.

  • PDF

Effect of Fly ash Application on the Yield of Rice and Silicate Availability in Paddy Soil (Fly ash 시용(施用)이 수도(水稻)의 수량(收量)과 논 토양(土壤)의 유효규산(有效珪酸) 함량(含量)에 미치는 영향(影響))

  • Kim, Yong-Woong;Yun, Chong-Hee;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.4
    • /
    • pp.275-283
    • /
    • 1994
  • The effects of anthracite and bituminous fly ash application on rice yield were investigated and the available silicate in paddy soil with ash application was analyzed. The obtained results are as follow : The yield of rice gradually decreased as the amount of anthracite ash increased. On the contrary, the rice yield gradually increased as the amount of bituminous ash increased. At harvesting stage the chemical properties in soil such as pH, organic content, and inorganic content($P_2O_5$, K. Ca, Mg and available $SiO_2$) were higher in bituminous ash treated soil than in anthracite treated soil. The amount of inorganic components in rice plant such as T-N, $P_2O_5$, $K_2O$, CaO, and MgO gradually decreased with the growing stage of rice. However, the amount of available silicate increased with the growing stage of rice. The silicate content in soil was determined by two different methods ; 1N-NaOAc extracted method and submerging setting method. In bituminous ash treated soil, the correlation between the silicate content in plant and in soil was found when the silicate content in soil was determined by the soil submerging method. In anthracite ash treated soil, however no correlation was found between the silicate content in plant and in soil determined by either method.

  • PDF

Effect of Silicate and Phosphate Solubilizing Rhizobacterium Enterobacter ludwigii GAK2 on Oryza sativa L. under Cadmium Stress

  • Adhikari, Arjun;Lee, Ko-Eun;Khan, Muhammad Aaqil;Kang, Sang-Mo;Adhikari, Bishnu;Imran, Muhammad;Jan, Rahmatullah;Kim, Kyung-Min;Lee, In-Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.1
    • /
    • pp.118-126
    • /
    • 2020
  • Silicon and phosphorus are elements that are beneficial for plant growth. Despite the abundant availability of silicate and phosphate in the Earth's crust, crop nutritional requirements for silicon and phosphorus are normally met through the application of fertilizer. However, fertilizers are one of the major causes of heavy metal pollution. In our study, we aimed to assess silicate and phosphate solubilization by the bacteria Enterobacter ludwigii GAK2, in the presence and absence of phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), to counteract cadmium stress in rice (Oryza sativa L). Our results showed that the GAK2-treated rice plants, grown in soil amended with phosphate [Ca3(PO4)2] or silicate (Mg2O8Si3), had significantly reduced cadmium content, and enhanced plant growth promoting characteristics including fresh shoot and root weight, plant height, and chlorophyll content. These plants showed significant downregulation of the cadmium transporter gene, OsHMA2, and upregulation of the silicon carrier gene, OsLsi1. Moreover, jasmonic acid levels were significantly reduced in the GAK2-inoculated plants, and this was further supported by the downregulation of the jasmonic acid related gene, OsJAZ1. These results indicate that Enterobacter ludwigii GAK2 can be used as a silicon and phosphorus bio-fertilizer, which solubilizes insoluble silicate and phosphate, and mitigates heavy metal toxicity in crops.

Preparation and Characterization of Sol-Gel Derived $SiO_2-TiO_2$ -PDMS Composite Films

  • Hwang, Jin Myeong;Yeo, Chang Seon;Kim, Yu Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1366-1370
    • /
    • 2001
  • Thin films of the SiO2-TiO2-PDMS composite material have been prepared by the sol-gel dip coating method. Acid catalyzed solutions of tetraethoxy silane (TEOS) and polydimethyl siloxane (PDMS) mixed with titanium isopropoxide Ti(OiPr) were used as precursors. The optical and structural properties of the organically modified 70SiO2-30TiO2 composite films have been investigated with Fourier Transform Infrared Spectroscopy (FT-IR), UV-Visible Spectroscopy (UV-Vis), Differential Thermal Analysis (DTA) and prism coupling technique. The films coated on the soda-lime-silicate glass exhibit 450-750 nm thickness, 1.56-1.68 refractive index and 88-94% transmittance depending on the experimental parameters such as amount of PDMS, thermal treatment and heating rate. The optical loss of prepared composite film was measured to be about 0.34 dB/cm.

Epitaxial growth of yttrium-stabilized HfO$_2$ high-k gate dielectric thin films on Si

  • Dai, J.Y.;Lee, P.F.;Wong, K.H.;Chan, H.L.W.;Choy, C.L.
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.63.2-64
    • /
    • 2003
  • Epitaxial yttrium-stabilized HfO$_2$ thin films were deposited on p-type (100) Si substrates by pulsed laser deposition at a relatively lower substrate temperature of 550. Transmission electron microscopy observation revealed a fixed orientation relationship between the epitaxial film and Si; that is, (100)Si.(100)HfO$_2$ and [001]Si/[001]HfO$_2$. The film/Si interface is not atomically flat, suggesting possible interfacial reaction and diffusion, X-ray photoelectron spectrum analysis also revealed the interfacial reaction and diffusion evidenced by Hf silicate and Hf-Si bond formation at the interface. The epitaxial growth of the yttrium stabilized HfO$_2$ thin film on bare Si is via a direct growth mechanism without involoving the reaction between Hf atoms and SiO$_2$ layer. High-frequency capacitance-voltage measurement on an as-grown 40-A yttrium-stabilized HfO$_2$ epitaxial film yielded an dielectric constant of about 14 and equivalent oxide thickness to SiO$_2$ of 12 A. The leakage current density is 7.0${\times}$ 10e-2 A/$\textrm{cm}^2$ at 1V gate bias voltage.

  • PDF

Synthesis and luminescent properties of $Sr_2SiO_4:Eu^{2+}$ phosphors ($Sr_2SiO_4:Eu^{2+}$ 형광체의 합성 및 발광특성)

  • Kim, Jong-Min;Park, Yong-Seo;Choi, Hyung-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.430-431
    • /
    • 2009
  • In this study, europium doped strontium silicate ($Sr_2SiO_4:Eu^{2+}$) phosphor has been synthesized by conventional solid-state method and investigated luminescent characteristic. $SrCO_3$ and $SiO_2$ were mixed together by 2:1 mole ratio. Also $NH_4Cl$ was added as a flux. The mixture were sintered at $800^{\circ}C$, $1000^{\circ}C$ for 3h under the atmosphere (5% $H_2$/95% $N_2$). This phosphor can be applicated to the yellow phosphor for white LED because it has yellow emission band (540nm), which emits efficiently under the 370nm excitaion energy.

  • PDF

Interfacing Silicate Layer Between MoO3 Ribbon and Pt Metaldots Boosts Methanol Oxidation Reaction

  • Lee, Dohun;Jeong, Juwon;Manivannan, Shanmugam;Kim, Kyuwon
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.273-281
    • /
    • 2020
  • Constructing and making highly active and stable nanostructured Pt-based catalysts with ultralow Pt loading are still electrifying for electrochemical applications such as water electrolysis and fuel cells. In this study, MoO3 ribbons (RBs) of few micrometer in length is successfully synthesized via hydrothermal synthesis. Subsequently, 3-dimentional (3D)-silicate layer for about 10 to 15 nm is introduced via chemical deposition onto the pre-formed MoO3 RBs; to setup the platform for Pt metaldots (MDs) deposition. In comparison with the bare MoO3 RBs, the MoO3-Si has served as a efficient solid-support for stabilizing and accommodating the uniform deposition of sub-2 nm Pt MDs. Such a structural design would effectively assist in improving the electronic conductivity of a fabricated MoO3-Si-Pt catalyst towards MOR; the interfaced, porous and 3D silicate layer has assisted in an efficient mass transport and quenching the poisonous COads species leading to a significant electrocatalytic performance for MOR in alkaline medium. Uniformly decorated, sub-2 nm sized Pt MDs has synergistically oxidized the MeOH in association with the MoO3-Si solid-support hence, synergistic catalytic activity has been achieved. Present facile approach can be extended for fabricating variety of highly efficient Metal Oxide-Metal Nanocomposite for energy harvesting applications.

The Engineering Properties of High Fluidity mortar with High Volume Slag Cement (고유동 대량치환 슬래그 모르타르의 공학적 특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Min-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.12-20
    • /
    • 2017
  • This report presents the results of an investigation on the fundamental properties of mortars high fluidity high volume slag cement(HVSC) activated with sodium silicate($Na_2SiO_3$). The ordinary Portland cement(OPC) was replaced by ground granulated blast furnace slag(GGBFS) from 40% to 80% and calcium sulfoaluminate(CSA) was 2.5% or 5.0% mass. The $Na_2SiO_3$ was added at 2% and 4% by total binder(OPC+GGBFS+CSA) weight. A constant water-to-binder ratio(w/b)=0.35 was used for all mixtures. The research carried out the mini slump, V-funnel, setting time, compressive strength and drying shrinkage. The experimental results showed that the contents of superplasticizer, V-funnel, setting time and drying shrinkage increased as the contents of CSA and $Na_2SiO_3$ increase. The compressive strength increases with and an increase in CSA and $Na_2SiO_3$. One of the major reason for these results is the accelerated reactivity of GGBFS with CSA and $Na_2SiO_3$. The maximum performance was CSA 5.0% + $Na_2SiO_3$ 4% specimens.